Supplemental Material For: Kinetics of Influenza A Virus Infection in Humans

Prasith Baccam,¹ Catherine Beauchemin,² Catherine A. Macken,¹ Frederick G. Hayden,³ and Alan S. Perelson¹

¹Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

²Department of Physics, University of Alberta, Edmonton, AB, T6G 2J1 ³Department of Internal Medicine, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA

(Dated: April 9, 2006)

This document contains additional details on the parameters, and statistics of the fits for the simple model (Table I), the model with delays (Table II), and the IFN model (Table III).

3R	$(0/mL)^2$.6		0.		.3		0.		0.		3.6		1.	-9.9	
Š	(TCID _E	4		2) w		4		6		15		2	5.1	
R_0		9.6	(5.7 - 22)	11.2	(5.9 - 23)	37.7	(15 - 82)	12.4	(10 - 16)	4.4	(3.6 - 5.4)	8.3	(6.2 - 27)	11.1	6.6 - 18.5	
$\langle t \rangle$	(h)	7.1		2.1		11.4		8.7		4.7		6.7		6.0	3.9–9.2	
δ	(d^{-1})	3.4	(2.7 - 4.1)	11.2	(4.0 - 77)	2.1	(0.99 - 6.3)	2.8	(2.7 - 2.9)	5.1	(4.7 - 5.2)	3.6	(2.3 - 4.7)	4.0	2.6 - 6.1	
$t_{\frac{1}{2}}$	(\mathbf{h})	5.0		7.7		7.9	-	5.4		4.0		4.6		5.6	4.6 - 6.9	
υ	(d^{-1})	3.3	(2.3 - 5.0)	2.1	(1.5 - 2.8)	2.1	(1.3 - 3.2)	3.1	(2.9 - 3.2)	4.2	(3.9 - 4.4)	3.6	(1.6 - 4.9)	3.0	2.4–3.6	
d	$(TCID_{50}/mL \cdot d^{-1})$	$7.9 imes10^{-3}$	$(5.2-15) imes 10^{-3}$	4.1×10^{-3}	$(2.3-4.7) imes 10^{-3}$	$3.2 imes 10^{-3}$	$(1.1 - 11) \times 10^{-3}$	$4.2 imes 10^{-2}$	$(3.7 - 4.7) \times 10^{-2}$	$1.0 imes 10^{-2}$	$(0.80 - 1.2) \times 10^{-2}$	$7.1 imes 10^{-2}$	$(4.1 - 20) \times 10^{-2}$	$1.2 imes 10^{-2}$	$4.8 \times 10^{-3} - 3.0 \times 10^{-2}$	
β	$((TCID_{50}/mL)^{-1} \cdot d^{-1})$	3.4×10^{-5}	$(2.6-4.3) imes 10^{-5}$	$1.6 imes 10^{-4}$	$(1.2-5.0) imes 10^{-4}$	$1.3 imes 10^{-4}$	$(0.49 - 3.4) \times 10^{-4}$	$6.3 imes10^{-6}$	$(4.8 - 7.3) \times 10^{-6}$	$2.3 imes 10^{-5}$	$(2.2-2.3) imes 10^{-5}$	$3.8 imes 10^{-6}$	$(1.4 - 5.7) \times 10^{-6}$	$2.7 imes 10^{-5}$	$8.8 \times 10^{-6} - 8.3 \times 10^{-5}$	
V_0	$(TCID_{50}/mL)$	$3.5 imes 10^{-1}$	$(1.8-5.1) imes 10^{-1}$	1.4×10^{-3}	$(0.059 - 3.8) \times 10^{-3}$	$1.0 imes 10^{-2}$	$(0.12 - 2.5) imes 10^{-2}$	$9.1 imes 10^{-1}$	$(8.6 - 9.5) imes 10^{-1}$	4.3×10^{-1}	$(4.2 - 4.5) imes 10^{-1}$	$3.3 imes 10^{-1}$	$(0.66 - 6.0) \times 10^{-1}$	9.3×10^{-2}	$.4 \times 10^{-2} - 6.1 \times 10^{-1}$	
Patient		1		2		3		4		5		9		avg	95% CI 1	

stant	ected ient.	etric	
e cons	or inre h pat	geom	
n rate	time (or eac	The	
fectio	se lite ven fo	ates.	
70), in	averag are gi	replic	
(1)	e (0), : el fit	strap	
irus ti	en rate e mod	boot	
itial v	ll deat nd th	y 200	
fit in	tea ce lata a	ined ł	
e best	, miec ental e	e obta	
ls. Th	$(t_{1/2})$ perime	s wer	
0^8 cel .	virus he ex	imate	
4×1	or rree veen t	ter est	л.
$T_0 = T_0$	t) betv	arame	o giveı
y with	c), nal s (SSR	fit pa	is also
t dela	rate (d iduals	s best	meter
vithou	rance ed res	atient'	ı paraı
odel w	u clea. squar	ach pa	r each
ted mo), vira um of	ath ei	nts fo
l limit	cell (<i>p</i> and si	Iderne	patie
get cel	ected $(R_0),$	sis ur	across
ie targ	ber inf mber	renthe	erval
for th	titer p ve nui	in pa	tce int
values	viral	given	nfiden
neter 7	ase of : repre	ervals	5% co
paran c ·	t mcre , basic	ce int∈	stric 9.
∋st fit	rate o. $\delta^{-1}\rangle$	ufidenc	geome
3 I: B¢	erage $t \rangle = \langle$	% cor	and .
[ABL]	o), av زراز	The 95	iverage

Patien	t V_0	β	k	1/k	d	с	$t_{\frac{1}{2}}$	δ	$1/\delta$	$\langle t \rangle$	R_0	SSR
	$(TCID_{50}/mL)$	$((TCID_{50}/mL)^{-1} \cdot d^{-1})$	(d^{-1})	(h)	$(TCID_{50}/mL \cdot d^{-1})$	(d^{-1})	(h)	(d^{-1})	(h)	(h)		$(\mathrm{TCID}_{50}/\mathrm{mL})^2$
	4.3×10^{-2}	4.9×10^{-5}	3.9	6.2	2.8×10^{-2}	4.3	3.9	4.2	5.7	11.9	30.4	4.3
	$(0.49 - 6.3) \times 10^{-2}$	$(4.4 - 5.8) \times 10^{-5}$	(3.3 - 6.3)		$(1.7 - 4.0) \times 10^{-2}$	(2.4 - 7.9)		(2.7 - 12)			(14 - 60)	
2	3.1×10^{-7}	$1.1 imes 10^{-3}$	2.0	12.1	$2.1 imes 10^{-2}$	11.0	1.5	10.9	2.2	14.3	75.0	6.5
	$(0.040 - 300) \times 10^{-7}$	$(0.58-6.7) imes 10^{-3}$	(1.0 - 2.9)		$(2.07 - 2.09) \times 10^{-2}$	(2.6 - 40)		(3.8 - 270)			(21 - 300)	
°	$7.0 imes10^{-1}$	$1.7 imes 10^{-4}$	4.9	4.9	$3.0 imes 10^{-3}$	2.2	7.5	2.3	10.3	15.2	39.6	8.0
	$(0.00017 - 62) \times 10^{-1}$	$(0.43 - 9.6) \times 10^{-4}$	(1.7 - 28)		$(0.56 - 26) \times 10^{-3}$	(0.44 - 3.4)		(1.2 - 15)			(12 - 350)	
4	4.9	$5.3 imes10^{-6}$	4.0	6.0	$1.3 imes10^{-1}$	3.8	4.4	3.8	6.4	12.4	19.1	2.9
	(2.9-6.6)	$(4.0-7.7) imes 10^{-6}$	(3.1 - 8.7)		$(0.68 - 2.3) \times 10^{-1}$	(2.7-4.3)		(2.7-10)			(8.3 - 34)	
ъ	1.7	$2.7 imes 10^{-6}$	6.0	4.0	$5.9 imes10^{-1}$	13.5	1.2	13.5	1.8	5.8	3.5	6.6
	(0.0043 - 64)	$(0.60 - 25) imes 10^{-6}$	NA		$(0.29 - 440) \times 10^{-1}$	(4.0 - 160)		(4.9 - 180)			(1.9 - 12)	
9	2.4	$8.4 imes 10^{-6}$	4.4	5.5	$7.1 imes10^{-2}$	3.7	4.5	3.8	6.3	11.8	16.6	11.8
	(0.035 - 7.3)	$(0.54 - 38) \times 10^{-6}$	(2.3 - 20)		$(1.7 - 94) \times 10^{-2}$	(1.6 - 8.7)		(1.9 - 10)			(5.1 - 60)	
avg	$7.5 imes 10^{-2}$	$3.2 imes10^{-5}$	4.0	6.0	4.6×10^{-2}	5.2	3.2	5.2	4.6	11.4	21.5	6.1
95% C	$1 7.6 \times 10^{-4}$ - 7.5	$6.0 imes 10^{-6}$ -1.7 $ imes 10^{-4}$	3.0 - 5.2	4.6 – 7.9	$1.2\times 10^{-2}1.7\times 10^{-1}$	3.1 - 8.7	1.9 - 5.3	3.2 - 8.6	2.8-7.5	8.8 - 14.7	10.1 - 46.1	4.3 - 8.7
TABLF $(\beta), tre$	II: Best fit parameter unsition rate to $I_2(k)$,	values for the target cell average estimated transi	limited mo tion time fr	del with om I_1 to	i delay, and $T_0 = 4 \times 1$ o I_2 (1/k), average rat	0 ⁸ cells. The e of increase	e best fit of viral	t initial viru titer per in	s titer (l fected c	7_0), infec	ition rate co iral clearan	nstant ce rate

Patient	V_0	β	$_{k}$	d	с	δ	σ	$arepsilon_1$	\mathcal{E}_2	R_0	SSR
	$(TCID_{50}/mL)$	$((TCID_{50}/mL)^{-1} \cdot d^{-1})$	(d^{-1})	$(\mathrm{TCID}_{50}/\mathrm{mL}\cdot\mathrm{d}^{-1})$	(d^{-1})	(d^{-1})	([F]/d)	$([F]^{-1})$	$([F]^{-1})$	Ŭ	$(TCID_{50}/mL)^2$
1	$1.0 imes 10^{-2}$	$4.2 imes 10^{-6}$	26.6	$3.2 imes 10^{-1}$	13.4	7.0	5.2	3.5×10^{-6}	3.0×10^{-7}	5.7	32.8
2	4.4×10^{-5}	$2.4 imes 10^{-5}$	32.4	$5.3 imes 10^{-2}$	7.4	3.8	2.2	3.7×10^{-6}	6.3×10^{-6}	18.1	3.1
3	$1.2 imes10^{-1}$	$7.6 imes 10^{-6}$	11.2	$1.1 imes 10^{-1}$	6.0	6.0	1.1	$3.1 imes 10^{-7}$	$5.3 imes10^{-7}$	9.3	7.6
4	$5.0 imes10^{+1}$	2.4×10^{-6}	6.1	$2.0 imes 10^{-1}$	5.3	5.1	1.9	6.3×10^{-8}	0.0	7.1	4.0
5	1.3	4.3×10^{-6}	8.0	$1.5 imes 10^{-1}$	7.2	7.9	1.7	0.0	$4.2 imes 10^{-8}$	4.5	11.9
9	$3.5 imes 10^{+1}$	$2.9 imes 10^{-7}$	10.1	2.5	9.7	9.6	1.1	0.0	0.0	3.1	8.7
avg	2.2×10^{-1}	$3.6 imes 10^{-6}$	13.0	$2.3 imes 10^{-1}$	7.8	6.3	1.9			6.8	8.3
95% CI 4	$.6 \times 10^{-3}$ -1.1 × 10 ⁺	$^{1} 1.2 \times 10^{-6} - 1.1 \times 10^{-5} $	8.0 - 21.1	$8.7\times10^{-2} - 6.0\times10^{-1}$	6.1 - 9.9	4.9 - 8.0	1.2 - 2.9		7.	1.3 - 10.6	4.5 - 15.3

The best fit initial virus titer (V_0) , infection rate constant (β) , transition rate to $I_2(k)$, average rate of increase of viral fiter per infected cell (p), viral clearance rate (c), infected cell death rate (δ) , interferon clearance rate (α) , effect of the interferons on $k(\varepsilon_1)$ and $p(\varepsilon_2)$, basic reproductive number (R_0) , and sum of squared residuals (SSR) between the experimental data and the model fit are given for each patient. The geometric average and geometric 95% confidence interval across patients for TABLE III: Best fit parameter values for the target cell limited model with delay and incorporating an interferon response, with $T_0 = 4 \times 10^8$ cells, s = 1, and $\tau = 0.5$ d. each parameter is also given.