A Simple Cellular Automaton Model for Influenza A Viral Infections

Catherine Beauchemin[†], John Samuel^{*}, and Jack Tuszynski[†]

July 14, 2004

 † Deparment of Physics
* Deparment of Pharmacy and Pharmaceutical Sciences University of Alberta, Edmonton, Canada

Funded by MITACS through the project Mathematical Modelling in Pharmaceutical Development

The simple CA model for viral infection

Project:

• Build a simple CA model which can reproduce experimental results of an uncomplicated viral infection with Influenza A.

Motivations:

- Current CA models, like CImmSim, are too complex and not well calibrated enough;
- Differential equation models of viral infection are typically spatially homogeneous and few include delays or age classes.

Why a CA?

• Why not? A CA offers a natural description of the physical system. There is good correspondance between the CA's parameters and measurable quantities.

Ultimate objective:

• Explore whether spatial pattern formation affects the development and outcome of a viral infection.

The CA model of influenza A

- The model considers 2 species:
 - **Epithelial cells,** which are the target of the viral infection, and; **Immune cells,** which fight the infection.
- The CA is run on a 2-D square lattice where
 - each site represents one epithelial cell; and
 - immune cells are mobile, moving from one lattice site to another.
- Update rules: synchroneous updating.
- Boundary conditions: toroidal for both cell types.
- The virus particles are not explicitly considered, rather the infection is modelled as spreading directly from one epithelial cell to another.

Rules for the epithelial cells

- 1. with probability INFECT_RATE for each infectious Moore neighbour.
- 2. after infected for EXPRESS_DELAY = 4 h.
- 3. after expressing for $INFECT_DELAY = 2$ h.
- 4. at a rate DIVISION_TIME⁻¹ × # healthy/# dead.
- 5. after Cell_lifespan = 380 h.
- 6. after infected for INFECT_LIFESPAN = 24 h.
- 7. when "recognized" by an immune cell.

Rules for the immune cells

Immune cells move randomly on the CA lattice at a speed of one lattice site per time step.

- 1. at random lattice sites as needed to maintain a minimum density of ${\tt BASE_IMM_CELL} = 1.5 \times 10^{-4}$ unactivated immune cells.
- 2. when older than $IMM_LIFESPAN = 168 \text{ h}$.
- 3. when it first occupyies an expressing or infectious lattice site.
- 4. If an activated cell is occupying an expressing or infectious lattice site, it kills the epithelial cell and RECRUITMENT activated immune cells are added at random sites after RECRUIT_DELAY = 7 h.

The non-tuning parameters

Parameter	Value	Bio. Range	Source
grid_width	440		
grid_height	280		
CELL_LIFESPAN	380 h	160 - 600 h	Piao 01
INFECT_LIFESPAN	24 h	unknown	Bocharov 94
EXPRESS_DELAY	4 h	unknown	Bocharov 94
INFECT_DELAY	2 h	unknown	Bocharov 94
BASE_IMM_CELL	1.5×10^{-4}	$\frac{15}{100} \times 100 \times 10^{-5}$	Westermann 92,
		100	Bocharov 94,
			Klinman 75
IMM_LIFESPAN	168 h	48 - 480 h	Bocharov 94
RECRUIT_DELAY	7 h	2 - 12 h	Bocharov 94

Sensitive parameters (Bocharov 94)

FLOW_RATE = 6 time steps/h

Speed of immune cells (biol. range = 2-20 time steps/h). DIVISION_TIME = 12 h

Duration of epithelial cell division (biol. range = 7--24~h). <code>INFECT_INIT</code> = 0.01

Fraction of cells initially infected (biol. range = 0.001-0.1). **RECRUITMENT** = 0.25

Number of immune cells recruited when one recognizes the virus $\ensuremath{\texttt{INFECT}}\xspace=2\ h^{-1}$

Rate of infection of the Moore neighbours

Initialization

- **Epithelial cells** All are assigned a random age and are set to the Healthy state, except for a fraction $INFECT_INIT = 0.01$ which, chosen at random, are set to the Containing state.
- **Immune cells** A density of BASE_IMM_CELL unactivated immune cells are placed at random locations on the CA lattice, each with a random age.

Comparing against experimental data

- 1. The infection should peak on day 2.
- 2. Over the course of the infection, the fraction of epithelial cells that are dead should be as follows:
 - (a) 10% on day 1;
 - (b) 40% on day 2;
 - (c) 10% on day 5.
- 3. From Fritz et al. 1999, experimental data recovered from 8 volunteers indicated that virus shedding persisted for 5 ± 2 d.
- 4. The number of immune cells should peak anywhere between day 2 (macrophages' peak) and day 7 (cytotoxic T cells' and B cells' peak).
- 5. At their peak, the number of B cells, helper T cells, and cytotoxic T cells should be 100-fold greater than their normal concentration, while that of plasma cells should be 10^4 -fold greater. This corresponds to 0.015 1.5 immune cells / epithelial cells for our parameters.

Results from the CA model

How good is this?

- We have introduced a 7 state variables and 12 parameters CA model of influenza A.
- To keep parameters within biological range, only 5 of the 12 could be used to tune the dynamics.
- Our model fits well 5 of the 7 available characteristics of the infection.
- Comparaison to Bocharov 94 model:
 - It is a 13 state variable and 60 parameters ODE model with delays.
 - It has more cell types, but not various infection cell classes.
 - At infection peak, 70% of cells are infected vs 50% for ours.
 - After the parameter fit, 9 of the 60 parameters were outside biological range, one of them was 10^6 -fold greater and two were 10^3 -fold greater.
- To our knowledge, our model and that of Bocharov 94 are the only models on influenza A.

Visualizing the simulations with MASyV

At 9 h, 37 h, 48 h, and 62 h after start of infection.

Where to find information and links

My personal webpage http://www.phys.ualberta.ca/~cbeau/

MASyV on Sourceforge and movie files from ma_immune http://masyv.sourceforge.net

The article on simple CA model of influenza A http://www.arxiv.org/abs/q-bio.CB/0402012

A good intro. to immunology for physicists and mathematicians:

A.S. Perelson, G. Weisbuch. **Immunology for physicists**, *Reviews of Modern Physics*, 69(4):1219-1267, 1997.

Travel assistance provided by the

J Kaplan Graduate Student Award