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Abstract

This project offers an overview of the use of Cellular Automata (CA) as a statistical technique to
study complex systems. First, elementary CA, such as the ones studied by Wolfram, will be presented
in detail. Then, the role of CA as a tool to study statistical mechanics systems will be demonstrated
through the simulation of the Ising spin model. Finally the expandable nature of CA will be explored
through the simulation of a more complex CA: pheromone trail laying and following by ants.
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1 Introduction: The Vast World of CA

Self-organizing behavior is a very hot topic these days. In fact, it has become such a trend that scientists from
all areas are now trying to apply it to an always wider variety of problems. Such buzzwords as “Emergence”,
“Distributed Intelligence”, “Stigmergy” or “Swarm Intelligence” are gaining increasing popularity.
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Self-organization occurs in systems composed of many extremely simple agents which interact through
very simple rules to collectively exhibit extremely complex behavior. The intelligence is neither contained in
the individuals, nor in a centralized information structure. Rather, the intelligence or complexity of those
systems arises from the multiple interactions between the individuals. Just like droplets accumulating slowly
with simple rules can give rise to the still poorly-understood snowflake, termites can build such an intricate
nest that it keeps the colony at a constant humidity level — a real marvel of achitecture.

The complexity of those systems comes from the extremely large number of agents that compose them.
Hence, a statistical approach to CA seems to be the ideal way to mimic and hopefully gain insights into the
mechanisms that rule these impressive systems.

In Section 2, the concepts of Cellular Automaton (CA) will be introduced. A good way to do this is
to present examples of elementary CA, such as those studied in great detail by Stephen Wolfram. Section
3 suggests a statistical mechanics approach to describing the elementary CA. In Section 4 the approach is
reversed and a statistical mechanic system, the 1-D Ising spin model, will be solved using CA simulations.
Results from the simulations will be analyzed and discussed. Finally, Section 5 will demonstrate how the use
of CA can be extended to more complex systems. The particular case of trail laying and following by ants
will be explored through CA simulations. Again, results from the simulations will be analyzed and discussed
along with a brief statistical analysis of the system.

2 Wolfram’s Elementary CA

Cellular automata were originally introduced by John von Neumann and S. Ulam under the name of “cellular
spaces” as possible idealization of biological systems (von Neumann, 1963, 1966). They sought to show that
biological processes such as the reproduction and evolution of organized forms could be modeled by simple
cells following local rules for changing a cell parameter with time [5].

A simple CA usually consists of a regular uniform lattice (or “array”), that can either be finite or infinite
(periodic boundaries) in extent. The lattice contains a discrete variable (or “cell”) at each site, that can
assume m possible discrete values.

The state of a CA is completely specified by the values of the variables at each site. The CA evolves in
discrete time steps, with the value of the variable at a given site being affected by the values of variables
at sites in its “neighborhood” on the previous time step. The “neighborhood” of a site can be defined
in numerous ways and can be as extended as one wishes. At a new time step, the variables at all sites
are updated simultaneously, based on the values of the variables and their defined “neighborhood” at the
preceding time step, and according to a definite set of local rules [5, 8].

Stephen Wolfram has done most of the early work on CA. In the ’80s, he published an extensive series of
articles on CA. He concentrated most of his work on elementary CA, namely 1-D CA with only two possible
values at each site: 0 or 1. Typically, the neighborhood he chose was defined to be the cell itself plus its two
immediate neighbors: the cells to its left and right. This type of CA as been thoroughly studied by Wolfram
and will be the main subject of this section.

From the definition of the neighborhood, it follows that the local rules for the evolution of the CA will
have to be defined for each combination of states of the 3 sites involved in defining the subsequent state of
a single site. For the sake of clarity, let’s label lc, cc and rc — for left, center and right cell, respectively
— the 3 cells involved in the determination of the state of the cc in the next time step. The set of possible
configurations for the 3 cells is then defined in the following manner:

111 110 101 100 011 010 001 000
0 1 0 1 1 0 1 0
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(a) (b) (c) (d)

Figure 1: Evolution of CA using rules of (a) type 1 (Rule 232), (b) type 2 (Rule 36), (c) type 3 (Rule 178),
and (d) type 4 (Rule 90).

where the bottom line indicates the state of the cc at the next time step given the (lc, cc, rc) configuration
on the top line. This means that any rule can be defined by an eight digit binary number where each digit
would represent the next state of the cc given its current state and that of its immediate neighbors. The rule
detailed on the second line is called “Rule 90”, from the binary number 01011010 defining it. Recall that a
binary number is read in the following manner:

01011010 = 0 · 27 + 1 · 26 + 0 · 25 + 1 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 0 · 20 = 90 (1)

In all, for a CA based on a 3-cell local rule, there are 8 configurations for which a result must be specifed
which makes for a total of 28 = 256 rules. However, those rules are usually reduced to a total number of
32 “legal” rules. The legal rules come from the fact that the CA were initially used for modeling biological
processes such as the reproduction of organized forms. This meant, for example, that a starting configuration
of all-zero sites, corresponding to the absence of any cells, should remain an all-zero configuration as it evolves
in time — the triplet 000 should always give 0. Secondly, the rules should be symmetric so that the left and
right cells are interchangable. This forces the rules for configurations 100 and 001 to be equal and for 110
and 011 to be equal [9]. Thus, the “legal” rules can be written as:

α1α2α3α4α2α5α40 (2)

where each αi can be 0 or 1; thus the number of legal rules is 25 = 32.

If one decides to start the CA with only one non-zero seed, interesting patterns develop. The 32 legal
rules can then be divided into 4 types according to their behaviour when seeded with a single cell. They are:

• type 1: disappear with time (0, 32, 72, 104, 128, 160, 200 and 232)

• type 2: merely copy the non-zero cell forever (4, 36, 76, 108, 132, 164, 204 and 236)

• type 3: yield a completely uniform type of rows (50, 122, 178, 222, 250 and 254) or uniform pairs of
rows (54 and 94)

• type 4: develop nontrivial patterns (18, 22, 90, 126, 146, 150, 182 and 218)

An example for each of the 4 types is presented in Figure 1. Each of the 4 types contains 8 rules: this is
no coincidence. What determines the personality of the outcome of a certain rule is the combination of its
local rules. It is then to be expected that by looking closer at the underlying local rules that are common to
the rules of a same type, one can learn how the local rules affect the resulting structures. For example,
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• type 1: α4 = 0 and α5 = 0,

• type 2: α4 = 0 and α5 = 1, and

• type 3,4: α4 = 1.

Recall that α4 specifies the result for the configurations 100 and 001 while α5 specifies the result for the
configuration 010.

The three first types are said to be “simple” CA. The last type however, contains more elaborate CA
that develop nontrivial patterns. At infinite time, those nontrivial patterns become self-similar fractals. In
fact, all Rules of type 4, with the exception of Rule 150, generate a Sierpinski gasket with D = 1.5850. Rule
150, the exception, is the golden ratio, D = 1.6942 [5].

3 Describing a CA in Statistical Mechanic Terms

According to the On-Line Harcourt Science and Technology Dictionary [4], Statistical Mechanics is “a branch
of physics that is concerned with the macroscopic behavior of a system based on the theory and treatment
of microscopic interactions between the constituent parts of the system, in which the number of constituent
parts is usually very large.” It is already obvious from this definition that CA have a lot in common with
statistical mechanics. Parallels will now be established between a statistical system and a CA. It will be
shown that it is possible to describe a statistical system using a CA just like it is possible to describe a CA
in terms of statistical mechanics.

Going back to a 1-D Wolfram elementary CA, let’s imagine a single row of N lattice points, where each
lattice point represents a particle. Let us say that the values they can take is 0 or 1 indicating, for example,
the spin orientation. A microstate of this system is a row of N particles with a given sequence of spins
represented by the values 0 and 1. In total there are 2N possible microstates all with an equal probability
of occuring1. From this definition, it is possible to define a macrostate as the set of all N -celled microstates
containing x cells of value 1. If one of the microstates is submitted to a specific rule, for example Rule 90,
a new microstate will result. Below is an example of the resulting microstate (2nd line) when Rule 90 is
applied to an original microstate (1st line) — note that periodic boundary conditions are used.

Original : 0 1 1 0 1 0 0 0
Resulting : 0 1 1 0 0 1 0 0

Thus, given a starting microstate, time evolution will result in a trajectory through subsequent mi-
crostates. The trajectory is dictated by the rule and may or may not lead back to the starting microstate.
Assuming each microstate exists in a starting ensemble of configurations with equal probability of occurence2,
time evolution will likely merge many configurations into a few and soon trajectories starting from almost
all initial configurations are concentrated onto short cycles, called attractors, containing only a few configu-
rations [5]. Hence the trajectories traced out by the time evolution of several microstates may coalesce, but
may never split. For instance, the extremely trivial Rule 0 will turn any starting microstate into the null
microstate (all lattice points are 0), so that in one time step, all configurations reduce to just one: this is
called a stable fixed point.

Almost all of the rules seen in Section 2 are irreversible, which means that although it is possible to identify
a unique resulting microstate for each original microstate, it is not possible to identify a unique original

1Provided that 0’s and 1’s have an equal probability of occuring.
2Again, provided that 0’s and 1’s have an equal probability of occuring.
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microstate for each resulting microstate. In other words, a particular microstate has unique descendents,
but does not necessarily have unique ancestors. Rule 240 is the lone exception since it is the identity rule:
each microstate is mapped only to itself. As such, Rule 240 is a reversible rule i.e. a rule in which each
microstate has a unique descendent and a unique ancestor. For a reversible system, trajectories representing
time evolution of different states never intersect or meet. Thus, for reversible systems, the total number of
possible configurations will remain constant with time. In the case of an irreversible rule, the total number
of possible microstates will be reduced as time evolves. For some systems, all trajectories might reduce to a
fixed point solution (a single microstate like in the case of Rule 0), while in other cases, it might reduce to
one or a few short cycles or attractors.

Irreversible behavior in CA may be analyzed by considering the behavior of their “entropy”. Entropy
is defined, as usual, as the logarithm (in this case base two) of the average number of possible states of a
system, that is

S(τ) =
∑
i

pi(τ) log2

(
1

pi(τ)

)
(3)

where pi(τ) is the probability of obtaining microstate i after τ time steps. τ = 0 corresponds to the starting
equiprobable ensemble with all pi(0) = 1/2N . To understand what this entropy effectively means for an N cell
elementary CA, let us look at a few examples. Consider a 2-cell elementary CA. The starting equiprobable
ensemble will then be composed of

Microstate 1 at time 0 : 0 0 with p1(0) = 1/4
Microstate 2 at time 0 : 0 1 with p2(0) = 1/4
Microstate 3 at time 0 : 1 0 with p3(0) = 1/4
Microstate 4 at time 0 : 1 1 with p4(0) = 1/4

thus, S(0) = 4 ∗ (1/4) log2(4) = log2(4) = 2. This demonstrates that the entropy, S = 2, corresponds to the
number of cells necessary to represent the 4 possible microstates.

If the CA is left to evolve for one time step, i.e. τ = 1, according to Rule 18 (00010110) for example, the
microstate ensemble would reduce to

(0) 0 0 (0) (1) 0 1 (0) (0) 1 0 (1) (1) 1 1 (1)
⇓ ⇓ ⇓ ⇓

0 0 0 1 1 0 0 0

where the values in parenthesis are the states required by the boudaries in order to impose periodic boundary
conditions. Note that at time step 1 the system cannot be found in the configuration 11 — the system of 2
cells can now only be in one of three microstates. The distribution of microstates at τ = 1 is

Microstate 1 at time 1 : 0 0 with p1(1) = 2/4
Microstate 2 at time 1 : 0 1 with p2(1) = 1/4
Microstate 3 at time 1 : 1 0 with p3(1) = 1/4
Microstate 4 at time 1 : 1 1 with p4(1) = 0/4

which gives S(1) = (2/4) log2(4/2) + 2 ∗ (1/4) log2(4/1) = 0.5(1) + 0.5(2) = 1.5. This means that the system
would effectively only need 1.5 cells to be fully described instead of the log2(3) ≈ 1.58 cells that one would
expect to need for the representation of a system with 3 microstates. The smaller entropy is due to the
microstates not being equally probable — an expression of the system’s tendancy towards organization.

From this example, it is quite clear that those elementary CA are self-organizing, tending to reduce in
complexity as they evolve. Entropy is typically maximized when a system is completely disorganized, i.e.
when all the microstates act independantly. Thus, the entropy of a CA takes on its maximal value of N
(or log2(# of states)) for an equiprobable ensemble. For an irreversible system, one can expect the entropy
of the system to go down and eventually stabilize to a given value as τ is increased. Figure 2 below shows
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(a) (b)

Figure 2: (a) Decrease of the entropy per site S(τ)/N as τ increases for an ensemble of elementary CA
(N = 10) evolving according to rule 126 from a starting equiprobable ensemble. (b) The fraction of the 2N

possible configurations of a length N elementary CA (with periodic boundary conditions) not reached by
evolution (no matter how many time steps τ are taken) from an arbitrary initail configuration under rule
126 as a function of N [8].

how the entropy of Rule 126 (irreversible) varies as τ is increased. It also shows how the fraction of possible
configurations that will not be reached increases in time as a function of N . Self-organizing behavior is
indicated by a decrease of entropy. The trajectories corresponding to the evolution of microstates are found
to become concentrated in limited regions and do not asymptotically fill the available volume densely and
uniformly. This “thinning” phenomenon makes self-organization possible, by allowing some configurations to
occur with larger probabilities than others even in the large-time equilibrium limit [8]. As can be seen from
Figure 2, the fraction of the 2N configurations of a length of N cellular automata (with periodic boundary
conditions) not reached by evolution from an arbitrary starting configuration will increase toward unity as
N increases.

Coming back to statistical mechanics, the second law of thermodynamics implies that isolated micro-
scopically reversible physical systems tend with time to states of maximal entropy and maximal “disorder’p’
However, “dissipative” systems involving microscopic irreversibility, or those open to interactions with their
environment, may evolve from “disordered” to more “ordered” states. The states attained often exhibit a
complicated structure. Examples are outlines of snowflakes, patterns of flow in turbulent fluids, and bio-
logical systems [8]. This is quite consistent with what has been exposed above regarding the evolutions of
reversible and irreversible elementary CA.

4 Describing a Statistical System in terms of a CA

In Section 3, it was seen that it is possible to describe a CA in terms of one of the most important statistical
mechanic quantities, entropy. In this section, it will be shown that it is possible to describe a statistical
system in terms of a CA and solve for it. Let us consider an isolated system consisting of N localized atoms.
Each atom has a spin which can be up or down, represented respectively by +1 or −1. This is called the
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Ising model. The energy of the system is given by

E = −J
∑
i

SiSi+1, (4)

the magnetization is given by

M =
∑
i

Si, (5)

the specific heat is given by

C =
δ 〈E〉
δT

=

〈
E2
〉
− 〈E〉2

kT 2
, (6)

the suceptibility is given by

χ =
δ 〈M〉
δH

=

〈
M2
〉
− 〈M〉2

kT
, (7)

and the probability of flipping a spin by

P =

{
e−∆E/(kT ) , ∆E > 0
1 , ∆E ≤ 0

. (8)

Usually the Boltzmann constant, kB, is taken to be 1 so that the temperature, T , can be expressed in units
of energy.

Just like for the elementary CA above, the atoms can be arranged on a row of N cells. The simulation
can be started with all the spins alligned either up or down — called “cold start” — or with a random
arrangement of spins — called at “hot start”. To make the simulation evolve in time, a cell is picked at
random and its spin is fipped with probability given by Equation 8. The following example will show what
possible values ∆E and ∆M can take. Just like for the elementary CA above, the value of the centre cell at
the next time step will depend on its own current value and the current value of its two immediate neighbors
which can either be parallel or antiparallel to one another. Here are the 4 possible situations:

↑↑↑ =⇒ ↑↓↑ → ∆E = +4J ; ∆M = −2
↑↓↑ =⇒ ↑↑↑ → ∆E = −4J ; ∆M = +2
↑↑↓ =⇒ ↑↓↓ → ∆E = 0; ∆M = −2
↑↓↓ =⇒ ↑↑↓ → ∆E = 0; ∆M = +2

Note that the cases ↓↓↓, ↓↑↓, ↓↓↑ and ↓↑↑ have been omitted since the problem is symmetric, i.e. the quantity
important to this model is the relative orientation not the absolute orientation. Thus, the probability of
flipping a spin is dictated by the neighborhood of the atom (left, center and right atoms), but also by the
external parameters J and T . Note that according to the definition of the probability of flipping a spin, the
system will tend towards an equilibrium in which all spins will be parallel if J > 0 or anti-parallel if J < 0.
Thus, a system with J > 0 is called a ferromagnet and one with J < 0 is called an antiferromagnet. The
speed at which the system will tend towards equilibrium depends on J and T . The greater J/T is, the faster
the system will tend to equilibrium because the probability of flipping a spin is greater for bigger values of
J/T . Finally, when the system has attained equilibrium, it will fluctuate around it. The amplitude of the
fluctuations will again depend on J and T ; the larger J/T , the greater the amplitude of the fluctuations.

At T = 0, the probability of flipping a spin is P = 0 for ∆E > 0 or 1 for ∆E ≤ 0. Thus, at T = 0,
for a uniform initial configuration (all spins up or all spins down), the system will remain indefinitely in the
same state with no fluctuations. For a random initial configuration, at T = 0, one can expect all the spins
to very slowly flip to eventually attain equilibrium. As T is increased, keeping J 6= 0 constant, the system
will attain equilibrium faster and fluctuations about it will get larger.

Using Equations 4 to 8 presented above, I implemented a CA of the Ising Spin Model. The results are
presented in Figure 3. As can be seen from Figure 3, for high temperature the results are in acceptable
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Figure 3: Results from simulations of the Ising Spin Model. It presents (a) Energy, (b) Magnetization, (c)
Specific Heat and (d) Suceptibility as a function of kT (where k = 1 and B = 1× 10−9).
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agreement with what the theory predicts. The theoretical values for energy, magnetization, specific heat and
suceptibility presented in Figure 3 were computed using the following equations [6].

E

N
= − tanh

(
J

kT

)
(9)

M

N
=

eJ/kT sinh(B/kT )√
e2J/kT sinh2(B/kT ) + e−2J/kT

(10)

C

N
=

1

N

dE

dT
=

(J/kT )2

cosh2(J/kT )
(11)

χ

N
=

1

N

dM

dB
=

1

kT

e−J/kT cosh(B/kT )[
e2J/kT sinh2(B/kT ) + e−2J/kT

]3/2
(12)

Unfortunately, a simple model such as this has its limits. Its approach to thermal equilibrium is qual-
itatively rather than quantitatively correct. Further, since there is very little or no magnetic field at all,
there is no preferred direction in space, which means that the average magnetization may vanish, and this
may lead to instabilities in which the spins spontaneously reverse. In addition, the phase transition at the
Curie temperature, a characteristic of magnetic materials, simply does not occur in the 1-D version of the
model [6]. Finally, at low temperature, good statistics are harder to compute since it takes a long time for
the system to equilibrate since most spin flips are rejected.

The Ising model does, however, remain a very good example of the use of CA to solve a statistical
mechanics problem. In the next section, we will see how CA of greater complexity can be used to model
multi-agent systems in an attempt to extract, from the simple local rules, the global underlying mechanisms
of such systems.

5 Extending CA to Multi-Agent Systems

It has been seen that statistical mechanic systems can be studied using CA. It has also been seen that CA
can be described in terms of statistical mechanical quantities such as entropy. That is just a small part of
what CA are about.

Statistical mechanics is a powerful tool for studying systems of many identical elements. Depending on
the constraints on the system, equations of increasing complexity are used to efficiently describe the system.
For example, the microcanonical ensemble is used to study a system where the total number of particles,
N , the volume, V , and the energy, E, of the system are constant. The canonical ensemble lets go of the
constraint on E but still keeps N and V fixed. Finally, the grand canonical ensemble relaxes the constraints
on N and E, allowing them to fluctuate, while keeping V constant [5].

Even if statistical mechanics is a very powerful tool, it has its limitations. While it is good at describing
systems where the number of agents is very large (such that it is possible to take the continuum approxima-
tion), it gives much poorer results when N is large but not enough to take the continuum approximation.
Furthermore, statistical mechanics is very appropriate for defining a system at its equilibrium state but soon
becomes too complex when the system is out of equilibrium. Finally, statistical mechanics is very limited
at describing systems of strongly interacting agents. When interactions are not weak and therefore cannot
be neglected, it might still be possible to explain a system in terms of a statistical mechanism, but the
formalism will be very particular and extremely limited in its applications. It goes without saying that this
would involve numerous approximations which might lead to poorly satisfying results.

The term Multi-Agent Systems (MAS) is used here to describe any system constituted of a great number
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of simple identical agents (molecules, insects, cells) interacting either directly or through their environment.
We will be interested in such systems that, from the simple interactions of their simple constituting agents,
will demonstrate complex behavior. The intelligence of such systems is neither found among their agents nor
is it centralized in an intelligent decision-making unit. Intelligence will simply be the result of the multitude
of interactions among the multitude of agents. Such intelligence has been appropriately named “Swarm
Intelligence” and is a very hot topic at the moment.

Let us take the example of a very popular MAS: pheromone trail laying and following by ants. Pheromones
are at the very centre of the ant communication system. Those chemical messages are used to signal danger,
identify a successful trail and even stimulate the aggressiveness of army ants during a raid. The scenario
of pheromone trail laying starts with an exploring ant discovering a food source. After having ingested as
much food as possible, the ant returns to the nest laying a pheromone trail. The trail will in turn stimulate
foraging ants at the nest. Some of those will manage to follow the pheromone trail all the way to the source,
ingest food and go back to the nest marking again the trail they followed to the source. Thus, those new
recruits become recruiters and the pheromone trail, getting marked stronger and stronger, will recruit more
and more ants.

Of course, this type of foraging recruitment is rarely infallible and in a system where this recruitment
technique dominates, it is imperative to take a closer look at the recruited ants that will never make it to
the source. In the literature, they are called lost ants [3] or exploring ants [2] — they are foraging ants that
do not exploit any food source.

Lost ants explore the foraging territory for a certain amount of time before returning to the nest — hence
the name “exploring ants”. This exploration process, an essentially random walk, gives rise to a normal
distribution of trajectories centred around the pheromone trail. Ant species with a low level of noise (high
precision in track following) are observed to have a narrow distribution (low variance), whereas species with
a high level of noise tend to show a larger distribution [3]. Although the lost ants do not exploit any of the
known sources, they can discover new food sources. It is then very interesting to investigate what would be
the best balance between low accuracy allowing discoveries of new food source, and high accuracy favouring
immediate exploitation (see [3] and additional references suggested therein).

5.1 An Algorithm for Trail Network Formation and Trail Following by Ants

My ant simulation is much more simple then this. It is restrained to the mechanisms of the early stages of
trail laying and trail following by ants. The project has been taken directly from Watmough and Edelstein-
Keshet’s 1995 paper on “Modelling the Formation of Trail Networks by Foraging Ants”. The paper studied
a very particular case: the initial formation of a trail by ants emerging from a central nest location. The
goal of the study was to understand how the behaviour of individual ants determines the patterns of the
resulting trail network [7].

This simple model consists of ants moving around in a defined area, that we will call the arena. As they
move, they deposit pheromone and perform an almost random walk biased by the local trail concentration.
Here are the basic rules of the algorithm:

• the ants move at a fixed speed of one square per step;

• as each ant moves it deposits pheromone at a constant rate of τ = 8 “units” per time step per ant;

• the pheromone evaporates at a steady rate of “1 unit” per time step;

• saturation of the ant’s antennae occurs at a pheromone level of CS = 100 “units”;
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Figure 4: Decision tree for the movement of an ant in ma ants.

• a lost ant (an ant not following a trail) will move randomly but with a turning kernel specifying the
probability of making a turn given the angle of the turn;

• a following ant will move where the product of the turning kernel and the trail concentration gives the
highest value;

• absorbing boundaries are used which means that ants stepping out of the arena will simply be removed
from the simulation;

• ants are added to the simulation at the nest (centre of the arena) at a rate of one per time step, up to
a maximum of MAXANTS ants.

Figure 4 presents the algorithm for moving an ant as a decision tree. Let us look at how the algorithm
unfolds following this decision tree. The “turning kernel” is used to determine the motion of a lost ant. A
turning kernel associates a probability, Bn, with a turn of 45n◦ (direction irrelevant). In my simulation,
as well as in the article, the “standard” turning kernel, B, is defined as {B1 = 0.360, B2 = 0.047, B3 =
0.008, B4 = 0.004}.

A random walk biased by the turning kernel described above will define the manner in which a lost
ant will move. An ant is automatically considered lost and will make its next move as such if there is no
pheromone at its current location. So the first step is to check if the ant is standing on pheromone. If it is
not, its movement will be determined by the lost ant function.
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Figure 5: Graph of fidelity as a function of pheromone concentration. The fidelity, φ, increases in direct
proportion to the trail concentration up to the saturation point.

If an ant is not a lost ant, i.e. it is currently standing on pheromone, it is then a follower. A follower follows
a trail with a certain probability of losing it. The probability of staying on a trail is termed the fidelity, φ,
and is usually dependant on the pheromone concentration of the trail at the ant’s current position. Fidelity
is assumed to be a linear function of the pheromone concentration up to the saturation level, where fidelity
will plateau to a constant. The fidelity as a function of pheromone concentration is depicted in Figure 5.
Thus, the probability of staying on the trail is given by:

φ (C) = ∆φmin

{
C

CS
, 1

}
+ φMinimum (13)

where C is the pheromone concentration at the current position and CS is the saturation point. To determine
whether an ant stays on the trail, a random number between 0 and 255 inclusively is picked and the ant
stays on the trail if the random number is smaller than the computed φ(C). If the random number is greater
than φ(C), the ant is considered lost and will move according to the lost ant algorithm described above.

Once it has been established that the ant will be a follower, it will move according to a follower ant
algorithm — what the authors call the “fork algorithm”. Among other things, the “fork algorithm” defines
the behaviour of a follower ant when the trail it is following crosses other trails. In the article, two different
fork algorithms are introduced; and like the article, two different algorithms were implemented for the rules
determining the movement of a follower ant.

In the first algorithm, the follower considers each of the 8 moves available to it. Then the product
of the pheromone concentration, which is at most the saturation level, and the trail swapping kernel (see
explanation below) associated with that position is computed for each of the 8 possible moves. If equal
probability is found between at least 2 of the positions, the ant is again considered lost and will move
according to the lost ant algorithm. Otherwise, the move for which the product gave the highest value will
be accepted and performed.

It is important to point out that the turning kernel used for the lost ant algorithm is not the same as
that used by the follower ant algorithm — called the “trail swapping” kernel. The trail swapping kernel is
defined as T = {72, 64, 24, 4, 0, 4, 24, 64} for angles of 0◦, 45◦, 90◦, 135◦, 180◦,−135◦,−90◦,−45◦ respectively.
And the product mentioned above is computed as:

product = T (θ) min

{
C(θ)

CS
, 1

}
(14)

where T (θ) and C(θ) are respectively the trail swapping kernel and pheromone concentration as a function
of the angle of turn, θ, and CS is the saturation value for the trail concentration.
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The second algorithm is much simpler. The follower checks if there is pheromone ahead and moves there
if there is. If not, the follower checks if there is pheromone at an angle of 45◦ to its left and right. If both the
left and right pheromone concentrations are equal, the ant is considered lost and will move according to the
lost ant algorithm. Otherwise, the ant will move to the position with the highest pheromone concentration.

Finally, if an ant steps out of the arena, it will be removed from the simulation (absorbing boundary
conditions). This is an approximation of an infinite domain. The run times for the simulation are kept an
order of magnitude below the mean time that an ant would arrive at the boundary by random motion alone.
Thus the majority of the ants at the boundaries are on trails leading out of the region. And since we are
concerned with the initial formation of the foraging trails, we can therefore assume that the return traffic is
negligible [7].

5.2 Results from the Simulation

In the article, the results are presented in the form of screen shots of the program after a given number of
time steps. This is done to illustrate the qualitative changes to the system resulting from changes to the
simulation’s parameters. Figure 6 and 7 present screen shots of my simulation along with the corresponding
simulation presented in the article.

Before introducing the screen shots, the symbols used to designate the various parameters should be
presented:

F = Total number of follower ants (a function of time)
L = Total number of lost ants (a function of time)
C = Pheromone concentration (a function of space and time)
CS = Pheromone concentration at which the ant’s antennae saturate

φ(C) = Fidelity or probability of the ant remaining on the trail at each time step
φmin = The minimum value of the fidelity (the intercept of the φ(C) vs C linear graph, see

Figure 5)
∆φ = The difference between the value at which fidelity plateaus (when C = CS) and φmin

τ = Rate at which ants deposit pheromone (how many “units” per time step)
Bn = The probability of an exploratory ant turning an angle of 45n◦. Usually expressed

as part of the turning kernel used in the lost ant algorithm and defined as B =
B1, B2, B3, B4

In the captions of Figures 6 and 7, a value for F , the total number of followers, and L, the total number
of lost ants, are presented. In the article, the authors introduce the ratio F/L as a quantitative measure of
trail strength. It is said that since all trails are headed by lost ants, the ratio is an indication of the average
number of followers per trail. The authors also point out that F/L represents the average trail strength and
does not distinguish between the case where there are several trails of moderate strength and the case where
there are a few strong trails and many weaker trails. The authors suggest that this distinction be made
using a visual count of the number of trails.

In the current context, it might be more interesting to come back to statistical mechanics and try to find
a way to determine the entropy of this system. Entropy is a very interesting quantity since it allows one to
quantify the level of organization of a system and therefore is a good measure of the level of self-organizing
that takes place in the simulated system. As usual, the entropy will be defined as the log of the number of
states available to the system at every step. To asses that, let us look at the possible states that a single ant
can take. If the ant is a lost ant, it can move to any one of the 8 positions available to it. If, however, the
ant is a follower, it can only move to the one position that was determined by which ever “fork algorithm”
was being used. Since the total number of states available to any given ant is 8, then log8 should be used.
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(a)

(b)

Figure 6: Testing the influence of the trail deposition rate on the trail network. (a) My simulation with
F (3955) = 203, L(3955) = 156, so F/L ≈ 1.30. (b) Their simulation [7, Figure 4(b)] with F (?) = 148,
L(?) = 108, so F/L ≈ 1.37. Both simulations were created using the following parameters: φmin = 247,
∆φ = 0, CS = 100, τ = 8, B = {0.360, 0.047, 0.008, 0.004} and the simple fork algorithm for 4000 steps.
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(a)

(b)

Figure 7: Testing the influence of using a narrower turning kernel on the trail network. (a) My simulation
with F (1470) = 113, L(1470) = 22, so F/L ≈ 5.1. (b) Their simulation [7, Figure 5(a)] with F (?) = 141,
L(?) = 16, so F/L ≈ 8.8. Both simulations were created using the following parameters: φmin = 255,
∆φ = 0, CS = 100, τ = 8, B = {0.135, 0.031, 0.008, 0.004} and the simple fork algorithm for 1500 steps.
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Figure 8: Normalized entropy as a function of time for the simulations presented in Figures 6 and 7.

This leads to the following definition for the “normalized” entropy of the system:

S

S0
=

log8

(
8L + F

)
log8 (8T )

=
L+ log8 (F )

T
(15)

where S is the entropy, S0 = T is the maximum entropy, L is the number of lost ants, F is the number of
follower ants, and T is the total number of ants. From this definition, the maximum normalized entropy, 1,
is attained when all ants are lost ants.

This measure of the self-organization capability of the system can be tested for the two simulations
presented in Figures 6 and 7. If the definition of the entropy is correct, one can expect the entropy to be
greater for Figure 6 than for Figure 7 since the former contains more lost ants wondering around the trail
network. A graph of the normalized entropy for both Figures has been computed using (15) and is presented
in Figure 8. As expected, the entropy of Figure 6 is greater than that of Figure 7. This is consistent with
what can be seen from the screen shots — in Figure 6 there are lots of lost ants wondering around the trail
network while in Figure 7 almost all the ants are on trails.

One might have noticed that the values of F and L presented for my simulation in Figures 6 and 7 are
not in agreement with the ones from [7]. This is due to mistakes in the original code that were corrected
in my simulation. The mistakes and their effect on the results are discussed at length in my Advance
Computational Physics final project [1]. Please refer to it for more information.

6 Conclusion: Cellular Automata as an Extension of Statistical
Mechanics

It has been seen that statistical mechanics and CA have a lot in common. In fact, it has been shown
that a CA can be described in statistical mechanics terms and that CA are thus a great tool for modeling
statistical mechanic problems. CA also allow one to simulate systems that are not possible to study using
statistical mechanics. Systems, such as MASs — systems for which the interactions between the different
constituting agents cannot be neglected — can very rarely be solved using a statistical mechanic approach.
Those systems, however, are perfect candidates for CA modeling.

Computer simulations such as CA have proven extremely useful in modeling those kinds of systems and

16



usually give very acceptable results. The beauty of CA is that with a minimum of simple local rules, one can
reproduce most behaviors exhibited by the highly complex system being modeled. The level of interactions
involved in MASs is usually quite well described by CA. In fact, it has been shown that CA seem like a
very promising approach to studying and understanding systems where the interactions between the various
agents are the key to the complex behaviour exhibited.

What one can hope to do in the future is to uncover the secrets of MASs. Through the simulation of
many MASs, using CA, one can maybe be able to gain intuition as to how a particular set of local rule will
influence the global dynamics of a system. The ultimate goal would be to be able to deduce global dynamical
equations for the system given its local rules. Until such a formalism exists, CA remains a wonderful tool
for the study of such systems. Its increasing popularity in a wide variety of domains including biology,
physics, chemistry, computer science, engineering and social sciences is certaintly a good indication of its
very expandable use.
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[6] R. H. Landau and M. J. Pàez. Computational Physics: Problem Solving with Computers. Wiley-
Interscience, New York, 1997.

[7] J. Watmough and L. Edelstein-Keshet. Modelling the formation of trail networks by foraging ants. J.
theor. Biol., 176, 1995.

[8] S. Wolfram. Statistical mechanics of cellular automata. Reviews of Modern Physics, 55, 1983. Available
at: http://www.stephenwolfram.com/publications/articles/ca/83-statistical/.

[9] S. Wolfram. Cellular automata as models of complexity. Nature, 311, 1984. Available at:
http://www.stephenwolfram.com/publications/articles/ca/84-cellular/.

[10] S. Wolfram. Cellular automata. Los Alamos Science, 9, Fall 1983. Available at:
http://www.stephenwolfram.com/publications/articles/ca/83-cellular/.

17


