Towards a better evaluation of optimal antiviral combination therapy in treating influenza infections

KEITH D. POORE, HANA M. DOBROVOLNY, AND CATHERINE A.A. BEAUCHEMIN
Department of Physics, Ryerson University, Toronto, ON

Background
- Since vaccine production takes ~6 months, antiviral drugs are the first line of defense.
- Two classes of anti-influenza drugs exist, adamantanes (M2 channel inhibitor) such as amantadine, and neuraminidase inhibitors such as oseltamivir.
- Combination therapy can reduce the incidence of drug resistance.

The stochastic model

T → E A target cell enters the eclipse phase (E) with the probability \(P = 1 - \exp(-\beta \tau) \)

E → Dead An infectious cell (I) produces virus (V) at a constant rate \(\beta \) and is lost due to cell entry at rate \(\gamma T \).

The parameters were determined by fits to in vitro treatment data.

What does therapy do?

- Amantadine shifts the viral titer peak to a later time.
- Oseltamivir shifts and decreases the viral titer peak.

The problems with synergy

When studying combination therapy, synergy is what is typically measured in practice. It is calculated by:

\[\text{Synergy} = \frac{W - (M + (1 - M)N)}{M} \]

where \(W = (1 - V_{\text{treat}}/V_{\text{baseline}}) \) is the fractional reduction of viral titer due to the combination, and \(M \) and \(N \) are the fractional reductions due to monotherapy.

Modelling antiviral efficacy

Antiviral efficacy \(e \) is typically represented by

\[e = \frac{e_{\text{max}} D}{D + IC_{50}} \]

- \(D \) — drug concentration
- \(e_{\text{max}} \) — maximum drug efficacy
- \(IC_{50} \) — drug concentration at which \(e = e_{\text{max}}/2 \)

Amantadine blocks virus entry \(\beta \to (1-e)\beta \)

Oseltamivir blocks viral release (= blocks production in model) \(p \to (1-e)p \)

- Optimal synergistic combination depends on time of measurement.
- When concentrations are sufficient to suppress infection \(W = 1 - 0/V_{\text{treat}} = 1 \), synergy cannot be computed.

Synergy of severity measures

When treatment is applied prophylactically (at \(t = 0 \)),

- There is a clear threshold above which the drug combination is sufficient to fully suppress infection (dark blue).
- Optimal drug combinations are found above that threshold.

Synergy is flawed: it is time-dependent and undefined when antiviral efficacy is sufficient to suppress infection.

Severity measures allow us to identify a family of drug combinations which suppress the infection → all these concentrations are equally good in this respect.

We find that some regions of best cost benefit (dark blue) coincide with concentrations which suppress infection.

Conclusion

- Synergy is flawed: it is time-dependent and undefined when antiviral efficacy is sufficient to suppress infection.
- Severity measures allow us to identify a family of drug combinations which suppress the infection → all these concentrations are equally good in this respect.
- From among these combinations, we can now choose optimal candidates based on any additional constraint we choose (e.g., cost).

Where to read more?