INVESTIGATING THE IMPACT OF CELL TROPISM ON INFLUENZA INFECTION SPREAD IN COMPUTER-SIMULATED LUNG TISSUE

Nada P. Younis, Benjamin P. Holder, Hana M. Dobrovolny, and Catherine A.A. Beauchemin
Department of Physics, Ryerson University, Toronto, ON

Motivation
- Influenza A is an infectious disease that affects humans as well as other animal species.
- In its seasonal form, it mainly attacks the upper respiratory tract in humans and lasts for a few days.
- Pandemic strains of influenza can be very severe with sustained, high viral titer loads and an infection that can spread to the lower respiratory tract.
- Owing to the fact that it can infect multiple species, various strains of influenza are optimized for a specific host and/or cell type.
- One possible cause for the difference in disease course is cell tropism (preference of virus for certain cell types).

The PDE model
Accounts for:
- the effect of diffusion in spreading (or restricting) a non-uniformly distributed amount of virus; and
- the depth-dependent distribution of the two cell types via a progressive depth-dependent change in infectivity, \(\beta \rightarrow \beta(x) \), and viral production rates, \(p \rightarrow p(x) \).

\[
\frac{\partial I}{\partial t} = -\beta(x)T(x,t)I(x,t)
\]
\[
\frac{\partial E}{\partial t} = \beta(x)T(x,t)V(x) - \frac{E(x,t)}{\tau_E}
\]
\[
\frac{\partial V}{\partial t} = \frac{\partial^2 V}{\partial x^2} + \beta(x)I(x,t) - cV(x,t)
\]

In our model, the respiratory tract is represented as a one-dimensional grid with the top of the respiratory tract at \(x = 0 \) and the bottom at \(x = 30 \) cm.

Initially all cells are in the target (\(T \)) state and infection is initiated by depositing a Gaussian-distributed virus concentration centred at \(x = 1 \) cm from the top of the respiratory tract with a standard deviation of 0.5 mm (= 1/32 the size of a large conch droplet [1]).

Objective
Explore the role of cell tropism in the severity of an influenza infection by using a spatially extended:
- partial differential equation (PDE) model; and
- agent-based model.

The two cell types
The cells of the human airway can be classified as:
- ciliated cells predominantly with \(\alpha = 2.3 \) surface receptors, mostly found in the lower respiratory tract; and
- non-ciliated cells predominantly with \(\alpha = 2.6 \) surface receptors, mostly found in the upper respiratory tract.

Cell tropism
Human-adapted influenza strains primarily infect non-ciliated cells whereas avian-adapted influenza strains primarily infect ciliated cells.

The two cell population model
The two cell types are assumed to differ only in:
- their susceptibility to infection, \(\beta \), and/or
- their rate of viral production, \(p \).

PDE: Effect of diffusion
Colours as follows: ODE (infinite diffusion), or a diffusion of \(10^{-8} \text{m}^2/\text{s}, 10^{-7} \text{m}^2/\text{s}, 10^{-6} \text{m}^2/\text{s}, 10^{-5} \text{m}^2/\text{s}, 10^{-4} \text{m}^2/\text{s}, 10^{-3} \text{m}^2/\text{s} \).
- The lower the diffusion, the slower the consumption of cells by virus leading to sustained viral loads.
- The viral titer decays once all cells are consumed.

PDE: Changing \(\beta \) with depth
We considered exponential growth/decay in corresponding to \(\beta_0 \) in [0.12, 12] (\(\beta_0 = 1 \) at \(x = 15 \) cm).
- A depth-decreasing \(\beta \) leads to protection of the lower respiratory tract where \(R_0 < 1 \) and sustained viral titer due to infection at a depth where \(R_0 = 1 \).
- A depth-increasing \(\beta \) leads to a delay in the infection as the virus diffuses to an infectible depth (where \(R_0 \geq 1 \)) and greater protection is afforded to the respiratory tract at lower diffusion rates.
- The effect of changing \(p \) is similar to that of changing \(\beta \) and is therefore not shown.

PDE: Changing \(\beta \) and \(p \)

Agent-based model results
Considering one cell population which is 500× harder to infect (\(\beta_0/p_0 \rightarrow 1/500 \)) we explored the effect of varying \(p_0/p_0 \).

Conclusions
- Considering a realistic diffusion (\(10^{-12} \text{m}^2/\text{s} \)) led to sustained viral titers which suggests the immune response is required to control the infection.
- A depth-decreasing infection rate (\(\beta \)) was somewhat effective in controlling infection spread suggesting a role for cell tropism in restricting infection spread.

Future directions
A realistic model will require the addition of:
- A drift term to account for viral transport and clearance via the mucus escalator.
- An immune response to control the infection.