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Abstract

Viral kinetics have been extensively studied in the past through the use of spatially well-mixed ordinary differential equations

describing the time evolution of the diseased state. However, emerging spatial structures such as localized populations of dead cells might

adversely affect the spread of infection, similar to the manner in which a counter-fire can stop a forest fire from spreading. In a previous

publication [Beauchemin, C., Samuel, J., Tuszynski, J., 2005. A simple cellular automaton model for influenza A viral infections.

J. Theor. Biol. 232(2), 223–234], a simple two-dimensional cellular automaton model was introduced and shown to be accurate enough to

model an uncomplicated infection with influenza A. Here, this model is used to investigate the effects of relaxing the well-mixed

assumption. Particularly, the effects of the initial distribution of infected cells, the regeneration rule for dead epithelial cells, and the

proliferation rule for immune cells are explored and shown to have an important impact on the development and outcome of the viral

infection in our model.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Mathematical modelling of viral infection dynamics has
become a very popular approach to understanding and
characterizing the dynamics of viral infections. The basic
viral infection model, which was introduced by Perelson et
al. (1996) and Perelson (2002), namely

dT

dt
¼ l� dT � kTV , ð1Þ

dI

dt
¼ kTV � dI , ð2Þ

dV

dt
¼ pI � cV , ð3Þ

describes the temporal evolution of the population of
susceptible or target cells, T, which become infected, I, as a
result of their interactions with virus particles, V . This
model is widely used with minor or major modifications to
e front matter r 2006 Elsevier Ltd. All rights reserved.
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study the dynamics of various viral infections. Typically,
these mathematical modelling efforts seek to determine
crucial parameters of the dynamics of a specific viral
infection which would be impractical or arduous to extract
experimentally.
But those simple ordinary differential equation (ODE)

models make the very important assumption that the
various populations of cells and virions are uniformly
distributed over the space where the infection takes place
for all times; an assumption that is rarely realistic, and
which may or may not affect in a significant way the
resulting dynamics. For this reason, there is growing
interest in probing the effect of spatial distribution on
systems in ecology (Durrett, 1994; Durrett and Levin, 1994;
Young et al., 2001), epidemiology (Lloyd and May, 1996;
Hagenaars et al., 2004) and immunology (Funk et al., 2005;
Louzoun et al., 2001; Strain et al., 2002).
Here, I explore the effects of spatial structures on the

dynamics of a viral infection, whose target cells are fixed in
space, using a two-dimensional cellular automaton intro-
duced in previous work (Beauchemin et al., 2005). I will
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(1)
Moore neighbour (8 nearest neighbours), where � = 2 h−1 is the rate of
infection of neighbours by infectious cells.

(2) A cell containing virions and which has been infected for   E = 4 h begins
expressing the viral peptide on their epitope.

(3) An expressing cell that has been infected for  I = 6 h becomes infectious.
(4) A dead cell is replaced by a healthy cell at rate b−1 × # healthy / # dead,

where b = 12 h is the division time of an epithelial cell.
(5) All cells will die of old age after living for exactly �H = 380 h, unless they

die earlier because of viral toxicity or immune recognition (see below).
(6) Because of viral toxicity, infected cells (i.e. containing + expressing +

infectious) will die after having been infected for �I = 24 h,unless they
die earlier from recognition (see below) or from old age (see above).

(7) Finally, expressing and infectious cells die when "recognized" by an acti-
vated immune cell.

Healthy epithelial cells get infected at rate � /8 = 0:25 h−1 per infectious 

Box 1. Evolution rules for the epithelial cells in the cellular automaton model.

1Note that the use of asynchronous updating, whereby individual cells

were sequentially picked at random and updated, has been tested and

resulted in a statistically identical behaviour (agreement within one

standard deviation).
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explore which kind of effects spatial structures can have on
the evolution and outcome of a spatially localized viral
infection. I will also show how these spatial structures
emerge and by which process they affect the dynamics of
the infection.

In the next section the reader will briefly be reminded
about the rules and parameters of the cellular automaton
model. Then, in Section 3, the effect of the distribution of
initially infected cells on the progression of the infection is
investigated. Section 4 compares a local regeneration rule
for epithelial cells to a global rule, i.e. the rule for the
replacement of dead epithelial cells with healthy cells. In
Section 5, the effects of the addition of immune cells at
random locations versus addition at the site of recruitment
are explored. Finally, in Section 6, the significance of the
spatial effects in the particular case of an uncomplicated
influenza A viral infection is discussed.

2. The cellular automaton

The cellular automaton (CA) model that will be used in
this work was introduced in Beauchemin et al. (2005),
where the values chosen for each parameter are justified,
and the choice of boundary conditions and grid size were
shown to be safe. The relationship between the notation
used here and that of Beauchemin et al. (2005) is listed in
Appendix A. The model was implemented in C as a client
simulation for the MASyV package (Beauchemin, 2005). It
considers two species of cells: epithelial cells which are the
target of the viral infection and immune cells which fight
the infection. The CA is run on a two-dimensional square
lattice where each site represents one epithelial cell, and
immune cells are mobile, moving from one lattice site
(epithelial cell) to another. The simulation grid is updated
synchronously and has toroidal boundary conditions for
both cell types.1 The virus particles are not explicitly
considered, rather the infection is modelled as spreading
directly from one epithelial cell to another.
The evolution rules of the CA model for the epithelial

and immune cell species are enumerated in Boxes 1 and 2,
respectively. At initialization time, each epithelial cell is
assigned a random age between 0 and dH . All but a fraction
rC ¼ 0:01 epithelial cells are initialized as healthy, the rest
are set as containing virions. Additionally, rM ¼ 1:5�
10�4 unactivated immune cells per epithelial cell are placed
at random locations on the grid.
3. Distribution of initially infected cells

In our CA model, the parameter rC is the fraction of
epithelial cells initially set in the infected state, and its
default value is 1%. In Beauchemin et al. (2005), the cells
to be initially set to the infected state were picked at
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(1) Unactivated immune cells are added at random lattice sites as needed to
maintain a minimum density of �M = 1.5 ×10−4 unactivated immune
cells per epithelial cell.

(2) All immune cells die of old age after living for exactly �M = 168 h.
(3) An unactivated immune cell becomes activated when it first occupies an

expressing or infectious lattice site.
(4) If an activated cell is occupying an expressing or infectious lattice site,

it kills the epithelial cell and rM = 0.25 new activated immune cells are
added at random locations on the grid. The integer part of rM (if rM > 1)
is used to determine the number of immune cells that will be added and
the fractional part is taken to be the probability of adding an additional
immune cell.

Additionally, immune cells move randomly on the CA lattice at a speed of one
lattice site per time step, and there are � = 6 time steps /h.

Box 2. Evolution rules for the immune cells in the cellular automaton model.
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random and this resulted in single infected cells as well as
groupings or patches of neighbouring infected cells of
various sizes. One way to investigate the effect of spatial
heterogeneities on the dynamics of the infection is to
change the spatial configuration of the epithelial cells that
are initially set in the infected state. To do this, our model
was modified to distribute the initially infected cells into
groups or patches of fixed size so that the effect of the size
of the patches of infected cells on the dynamics of the
infection can be investigated.

A new parameter, s, is added to our CA model, being the
number of cells that make up a patch of initially infected
cells. Since the number of epithelial cells to be initially
infected is not necessarily divisible by s, the quotient of that
division gives the number of patches to be added to the
simulation grid at start up, and the remainder of the
division is used to set the probability that an extra patch of
size s be added. This means that a fixed initial patch size is
enforced at the expense of a fixed fraction of initially
infected cells. Each patch of infected cells is individually
constructed and is added at a random location on the grid,
ensuring that no two patches are in contact with each
other. The Beauchemin et al. (2005) CA model defines the
neighbourhood of a site as consisting of the site itself and
its eight closest sites (Moore neighbourhood). A patch of
s infected cells is constructed by starting with a seed site
and growing it by sequentially picking one site at random
from the set of sites that neighbour previously selected
sites. Note that this method of forming patches results in
patches with densities that decrease with increasing
distance from the centre. This characteristic is consistent
with a splatter or spray of virions and thus this method was
preferred over other patch growing methods such as
diffusion-limited aggregation, and random walk additions
around a seed.
The results for patches ranging in size from 1 to 1232

infected cells are presented in Fig. 1. One can see that
increasing initial patch sizes result in fewer infected cells
and less epithelial damage. This is not surprising since only
the cells that make up the perimeter of the patch, i.e. those
that have healthy neighbours, can infect other cells. As
patches grow, their perimeter to area ratio, namely the
fraction of infectious cells that have healthy neighbours,
will decrease and so will the effective infection rate.
Let us illustrate this by an example. Consider a system

where infected cells infect all of their uninfected Moore
neighbours (eight nearest neighbours) in each time step (an
infection rate of 100%). The evolution of the system from
an initial single seed is illustrated in Fig. 2. From the
relation derived in the table of Fig. 2, one can compute the
effective infection rate, i.e. the number of newly infected
cells per infected cell at time step n, to be
8ðnþ 1Þ=ð2nþ 1Þ2 ¼ 4=

ffiffiffi

I
p
þ 4=I , where I ¼ ð2nþ 1Þ2 is

the number of infected cells in a square patch after n time
steps. A graph of the effective infection rate as a function
of the number of infected cells in a square patch is
presented in Fig. 3. For this toy model, the effective
infection rate is proportional to 1=

ffiffiffi

I
p

for Ib1.
Another interesting feature that can be seen in Fig. 1 is

the increasing standard deviation for increasing initial
patch sizes. This is easily explained with the fact that the
larger the parameter s, the fewer the sites of infection. In
other words, as the initial patch size increases, the 50
simulations are averaging over fewer infection sites. Fig. 4
presents two example simulations to illustrate the differ-
ences that can arise between simulations produced using
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Fig. 1. The effect of varying the initial patch size, s, on the dynamics of the viral infection. The graphs show the time evolution of the populations of

healthy (top left), dead (top right), infected (bottom left), and immune cells (bottom right) for s values of 1, 2, 4, 8, 16, 35, 77, 154, 308, 616, and 1232 cells.

The greyed areas mark one standard deviation after 50 runs for each initial patch size, with periodically decreasing darkness corresponding to increasing

initial patch sizes. In all cases, the black band that peaks first is s ¼ 1. The graphs show that the dynamics of the viral infection is sensitive to the spatial

organization of the initially infected epithelial cells.
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the same parameter values, when the initial patch size is
large. In the case of the example simulations presented in
Fig. 4, early detection made the difference between a small
and short infection, and a longer infection resulting in a
greater number of infected and dead cells. The larger the
initial patch size, the fewer the number of infected patches
and thus, the more pronounced this effect will be. This
variability for larger values of s can be reduced by
averaging simulations with the same number of infection
sites (same number of patches) rather than the same
absolute number of infected cells (same area).

Finally, it can be seen that there is a decrease in peak
immune cell concentration for initial patch sizes below
s ¼ 2. It is clear that there are two processes at work: one
which dominates at small initial patch sizes and one which
dominates at large initial patch sizes. As seen in the bottom
left of Fig. 1, the peak number of infected cells decreases
monotonically as the initial patch size is increased. The
peak concentration of immune cells is, mostly, determined
by the peak number of infected cells, and this explains the
decrease in the peak concentration of immune cells as
the patch size increases. However, I have yet to determine
the process responsible for the decrease in peak immune
cell concentration at small initial patch sizes.

3.1. Not just a rescaling problem

It may be tempting to interpret the effect of the initial
patch size on the development and outcome of the infection
as a rescaling of the system. In effect, one could imagine
that each lump of infected cells represents a single infected
cell such that the surface area of one epithelial cell
corresponds to s sites of the simulation grid. A grid of
area A with an initial patch size of s would be equivalent to
a grid of area A=s with an initial patch size of 1. This turns
out to be an incorrect interpretation, as seen in Fig. 5. This
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Fig. 2. Evolution of a simplified system where each infected cell infects all of its uninfected neighbours at each time step, starting from a single infected

cell. The table shows the number of infected cells and the number of cells that will become infected in the next time step. The figure illustrates the evolution

of the system over the first four time steps with infected cells represented in dark grey and the cells which will be infected in the next time step represented

in light grey.
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as a function of number of infected cells in a square patch for the

simplified system presented in Fig. 2. The effective infection rate is given
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Fig. 4. Proportion of healthy cells (dotted), infected cells (dashed), and

immune cells per epithelial cell (full) for two simulations using an initial

patch size of s ¼ 77. The simulations, whose only difference is the seed for

the random number generator, illustrate the differences that can arise for

large values of the initial patch size. In this case, early immune detection

(lines with circles) of the infection has allowed minimal damage and early

recovery, while late detection (lines without symbols) has resulted in a

longer infection with a larger number of infected and dead cells.
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figure illustrates that one consequence of increasing the
number of simulation sites per epithelial cell is an increase
in the number of configurations the simulation can be in.
For example, this causes the radius of infection sites to
grow more slowly, even when the cell-to-cell infection rate
is increased so that the rate of increase of infected tissue
area is kept constant.

3.2. Occurrence of chronic infection

It is not clear from Fig. 1, but for initial patch sizes
larger than 35, a number of simulations result in chronic
infection with the fraction of infected cells stabilizing at 2%
in all such cases. The occurrence of chronic infection
increases for increasing initial patch sizes. This is illustrated
in the top left panel of Fig. 6. What causes chronic
infections in the case of larger initial patch sizes is the lower
effective infection rate, which slows the infection dynamics.
If the infection growth is slowed down, the infection takes
place over a longer period of time and the immune cells
start dying off before the infection is fully cleared. Thus, in
the CA model, chronic infection arises when the immune
cells’ lifespan is shorter than the time scale of the infection.
Chronic infections can be prevented by choosing a larger
value for dM , the lifespan of immune cells, for larger values
of s, the initial patch size. For s ¼ 1232, there are still
occurrences of chronic infection with dM ¼ 300 h, but the
infections are always cleared for dM ¼ 400 h (not shown).
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Fig. 5. The comparison of the infection growth pattern for a simulation

where each epithelial cell is represented by (top) a single grid site or

(bottom) 4 grid sites (s ¼ 4). For the infection growth rate to be

comparable for the two simulations, the fraction of the grid which gets

infected needs to be kept constant such that an infection rate b for an

initial patch size of 1 becomes b � s for an initial patch size of s. Despite this

correction, the infection growth pattern is not equivalent because, for

example, the radius of the infection increases faster in the former.
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4. Global vs local epithelial regeneration

In the model presented in Beauchemin et al. (2005),
the regeneration of dead epithelial cells was implemented
as a global process rather than a local process, namely,
a dead cell is replaced by a healthy cell with probability
b�1 � # healthy=# dead. See rule 4 of Box 1. This epithelial
cell regeneration rule was originally chosen to mimic the
replacement of dead cells by basal cells or by cells from
inferior layers in the context of an influenza A infection.
If one, instead, considers an infection taking place
in a tissue composed of a monolayer of cells, a local
regeneration rule based on the division of immediate
neighbours is more appropriate. In this section, the
impact of using the local epithelial cell regeneration rule
on the dynamics of the infection is investigated. Local
regeneration of epithelial cells is modelled by altering
rule 4 of Box 1 so that a dead epithelial cell is replaced
by a healthy one only if one of its healthy neighbours
divides. Note that for both epithelial cell regeneration
rules, division or regeneration is simply the process by
which a dead cell is replaced by a healthy cell. If there are
no dead cells, nothing happens, no regeneration rule is
invoked.

The original global regeneration rule is equivalent to
assuming that dead and healthy epithelial cells are
homogeneously distributed throughout the simulation grid,
which is the way in which epithelial regeneration is
implemented in simple ODE models. Comparing the two
regeneration rules allows us more insight into the effect of
the spatial distribution of cells on localized infection
dynamics. The results of simulations comparing the global
to the local epithelial cell regeneration rules are shown in
the left column of Fig. 7. The top left panel shows the
original model with the global epithelial cell regeneration
rule, as presented in Beauchemin et al. (2005), and the
bottom left panel shows the same model using the local
epithelial cell regeneration rule. Time-lapse images of a
section of the simulation grid at various days post-infection
for both rules are presented in the first and third rows of
Fig. 8. Additionally, the numbers of infected and dead cells
at their respective peaks relative to their values in the
original CA model introduced in Beauchemin et al. (2005)
are presented in Table 1 in the two rows labelled ‘‘Newly
recruited immune cells placed at random locations’’; the
other rows will be discussed in Section 5. One can see that
the local epithelial cell regeneration rule results in fewer
infected cells and, consequently, in the recruitment of fewer
immune cells but in more extensive and longer lasting
damage to the epithelium compared to the global
regeneration rule.
In the CA model, the infection of epithelial cells spreads

locally as infected cells infect their healthy neighbours
forming growing patches of infected cells. As the infec-
tion progresses, infected cells at the core of these patches
die as a result of virus toxicity or immune attacks, and
leave behind patches of dead cells surrounded by a
perimeter of infected cells. Patches of dead cells can no
longer harbour infection and thus serve to limit the growth
of the infection. With the global epithelial cell regenera-
tion rule, new healthy cells are allowed to emerge in the
middle of the pools of dead cells. This allows the infection
to rapidly repopulate the patches of dead cells, thus
sustaining a high level of infection with minimal epithelial
damage.
With the local epithelial cell regeneration rule, the

patches of dead epithelial cells can only be repopulated
by healthy cells once the immune cells have begun
destroying the rings of infected cells that encircle each
patch of dead cells, which otherwise act as a barrier
isolating healthy cells from the areas that require regenera-
tion. Thus, the greater accumulation of damage that
results from the use of the local regeneration rule is a
consequence of the spatial constraints imposed on the
regeneration process. This finding is in agreement with that
of Strain et al. (2002), who reported that for their spatial
model of HIV, the infection could only be sustained as a
propagating wave when the local rate of cell death was
greater than the local regeneration rate, as is the case with
our model when using the local regeneration rule for
epithelial cells.

4.1. Occurrence of chronic infection

Examination of the results of the local epithelial cell
regeneration rules for various initial patch sizes reveals the
persistence of infected cells, namely a chronic infection
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Fig. 6. Fraction of simulations ending in chronic infection as a function of the initial patch size, using the global (top row) or local (bottom row) epithelial

cell regeneration rule, with the addition of immune cells at random locations (left column) or at the site of recruitment (right column). The results were

obtained by averaging over 50 simulation runs.
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stabilizing at approximately 1% of cells infected, for all but
an initial patch size of 1. This is illustrated in Fig. 6, where
the fraction of simulations ending in chronic infection as a
function of the initial patch size for the local epithelial cell
regeneration rule is presented in the bottom left panel. The
smaller number of infected epithelial cells resulting from
the use of the local regeneration rule results in the
recruitment of fewer immune cells making it harder to
fight the viral infection. Additionally, the organization of
the infected cells into circular waves makes it harder for the
immune cells to target the infected cells’ structures. When
infected cells are arranged into patches, an immune cell
performing a random walk has better chances of landing
on multiple infected sites. When infected epithelial cells
organize into rings, as is the case with the local regenera-
tion rule, immune cells performing a random walk will
often move off the ring structure and ‘‘lose sight’’ of the
infection. Consequently, the smaller number of infected
cells and their organization into circular waves facilitates
the escape of the infection from immune attacks resulting
in a higher incidence of chronic infections than for a global
epithelial cell regeneration rule.

5. Immune cells’ proliferation rule

The proliferation of immune cells in the model presented
in Beauchemin et al. (2005) is such that when an activated
immune cell moves onto an expressing or infectious cell,
new activated immune cells are added at a rate of rM ¼

0:25 at a random location on the grid. The addition of
immune cells at random locations can be justified
biologically by the scenario of immune cells being activated
and proliferating in the lymph nodes, travelling to the site
of infection, and surfacing at random locations throughout
the infected tissue. But immune expansion could instead be
modelled by adding new activated immune cells on the site
where the recruiting activated immune cell is located, hence
mimicking immune cell (T cell, macrophages, etc.) division
at the infection site. This scenario could correspond to
immune cells being activated in the lymph nodes, but
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Fig. 7. The effect of a global (top row) or local (bottom row) epithelial cell regeneration rule with the addition of immune cells at random sites (left

column) or at the site of recruitment (right column) on the behaviour of the CA model. Simulation results averaged over 50 simulation runs for an initial

patch size of 1. The paired lines mark one standard deviation and represent the fraction of epithelial cells that are healthy (dotted), infected (dashed), dead

(full with circles), as well as the proportion of immune cells per epithelial cells (full). The top left panel corresponds to the original model presented in

Beauchemin et al. (2005).
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travelling to the site of infection while still undergoing their
programmed cycles of divisions.2 In Fig. 7, the infection
dynamics for the addition of immune cells at random
locations and at the site of recruitment are compared for
the two choices of epithelial cell regeneration rule. Time-
lapse images of a section the simulation grid at various
days post-infection are presented in Fig. 8 for the two
immune cell proliferation rules for both epithelial cell
regeneration rules. Additionally, the numbers of infected
and dead epithelial cells at their respective peaks for all
2Note that the immune cells of the model are ‘‘generic’’ immune cells.

Their killing of expressing or infectious epithelial cell is reminiscent of

killer T cells (CD8þ or cytotoxic T lymphocytes). On the other hand, since

infection in the model spreads as infectious cells infect healthy neighbours,

the killing of such cells has an effect similar to the clearance of virions by

the large amount of antibodies secreted by plasma B cells. As such, the

immune cells of the model represent the combined action of various

components of the immune response rather than immune cells of a

particular type.
rules relative to their values in the original model
introduced in Beauchemin et al. (2005) are presented in
Table 1.
Regardless of the epithelial cell regeneration rule, the

addition of immune cells at the site of recruitment results in
more infected cells at the peak of the infection than
addition at random locations. The addition of immune
cells at random locations allows recruited immune cells to
surface randomly onto a previously unexplored site and
efficiently discover new patches of infection. With the
addition of immune cells at the site of recruitment, it takes
longer for immune cells to discover new sites of infection as
they can only find them by diffusion. Thus, although the
discovered infection sites are cleared faster and more
efficiently with the addition of immune cells at the site of
recruitment, the undiscovered infection sites are allowed to
grow for longer, resulting in more infected cells overall.
In contrast, the addition of immune cells at the site of

recruitment rather than at random locations has a different
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Fig. 8. Time-lapse images of a section of the simulation grid for four simulations obtained using the same parameter values and initial cell distribution at

days 1.0, 2.6, 3.5, and 4.4 post-infection from left to right, with an initial patch size of s ¼ 16. Each row represents a different rule for the global (top two

rows) or local (bottom two rows) epithelial cell regeneration, with the addition of immune cells at random locations (first and third rows) or at the site of

recruitment (second and fourth rows). Healthy epithelial cells are white, containing cells are green, expressing cells are yellow, infectious cells are red, and

dead cells are black. Immune cells are blue circles. The top row corresponds to the original model presented in Beauchemin et al., 2005.

Table 1

The effects of the epithelial cell regeneration rules and the immune cell

recruitment rules on the number of infected and dead cells at their

respective peak

Epithelial cell

regeneration

occurs

Newly recruited

immune cells

placed at

Maximum

infected cells

(relative)

Maximum

dead cells

(relative)

Globally Random

locations

1.0 1.0

Recruitment site 1.1 0.46

Locally Random

locations

0.80 2.1

Recruitment site 0.85 2.3

The numbers are relative to their values for the rules of the original model

introduced in Beauchemin et al. (2005), namely global epithelial cell

regeneration with the addition of immune cells at random locations.
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impact on the number of dead cells at the peak for the two
epithelial cell regeneration rules. The addition of immune
cells at the site of recruitment results in fewer dead cells
when combined with the global epithelial cell regeneration
rule, but more dead cells when combined with the local
regeneration rule. This discrepancy in the effects of the
choice of immune cell addition rule for the two epithelial
cell regeneration rules can be explained as follows. For the
global epithelial cell regeneration rule, the addition of
immune cells at random locations allows the infection to
grow almost undisturbed while the immune cells slowly
populate the grid randomly through recruitment, mainly
landing on healthy sites. But when a sufficient number of
immune cells have been added, such that new immune cells
tend to be placed on infected sites, the destruction of
infected cells by immune cells begins and happens very
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3The lifespan of a productively infected cell has been reported as 24 h in

Bocharov and Romanyukha (1994), 12 h in Baccam et al. (2006), and 33 h

in Möhler et al. (2005). The virion burst size has been reported as 103–104

in Bocharov and Romanyukha (1994), and 1:9� 104 in Möhler et al.

(2005). The virion clearance rate has been reported as 0.1–0:3h�1 in

Baccam et al. (2006), and 0:009h�1 in Möhler et al. (2005).
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abruptly. It is this abrupt destruction of infected cells by
immune cells that results in the greater number of dead
cells seen with the addition of immune cells at random
locations rather than at the site of recognition with the
global epithelial cell regeneration rule. This also happens
when using the local epithelial cell regeneration rule, but in
this case the effect is masked by the large increase in cell
destruction at undiscovered infection sites. In fact, with the
addition of immune cells at the site of recruitment and the
local epithelial cell regeneration rule, the undiscovered site
are sometimes allowed to grow to such extent that the
infection gets cleared by target-cell limitation in those
areas.

It might seem at first that the greater number of infected
cells resulting from a non-cytopathic pathogen (as cells are
no longer dying from the cytopathic effects of the virus)
would result in a very extensive amount of damage at the
onset of the abrupt destruction of infected cells. However,
with this CA model, this does not happen. The results of
setting the infected lifespan to dI ¼ 4� 106 h, which is
much longer than the duration of the simulation, were
compared with those obtained using the original model
presented in Beauchemin et al. (2005) in which dI ¼ 24 h.
The comparison revealed that lengthening the lifespan of
infected epithelial cells does not have a significant effect on
the resulting dynamics and does not result in extensive
epithelial damage. This is because older infectious cells,
regardless of their lifespan, find themselves at the centre of
infected patches, and so do not contribute to the infection
spread since they do not have healthy neighbours to infect.
In the case of short lived infected cells (cytopathic
pathogen), for example with dI ¼ 24 h, dead infectious
cells are replaced with healthy cells which are then re-
infected and the configuration of the simulation is
essentially unchanged from the case of long lived infectious
cells. The only difference is that, in the case of long lived
infected cells (non-cytopathic pathogen), the uninterrupted
presence of the infectious cells causes slightly more immune
cells to get recruited.

5.1. Occurrence of chronic infection

Examination of the runs in which immune cells are
added at the site of recruitment rather than at random
locations reveals a dramatic decrease in the fraction of
simulations ending in chronic infection. The addition of
immune cells at the site of recruitment using the global
epithelial cell regeneration rule produced no chronic
infection in any of the 50 simulations performed for each
initial patch size. Using the local epithelial cell regeneration
rule, the addition of immune cells at the site of recruitment
produced only a handful of simulations resulting in chronic
infection, with the fraction of infected cells stabilizing
at approximately 0:1% in all cases. This is illustrated in
Fig. 6.

The reduction in the fraction of simulations resulting in
chronic infection when adding immune cells at the site of
recruitment rather than at random locations is easily
explained. At high infection levels, the addition of immune
cells at the site of recruitment increases the efficacy of the
response at the site of recruitment but makes it harder for
immune cells to find other sites of infection. This results in
a greater number of infected cells. But at low infection
levels, immune cells added at random locations will rarely
be added at an infection site and are likely to die of old age
before they can diffuse to an escaped infection foyer. Thus,
the addition of immune cells at random locations is the
better strategy for high levels of infection allowing rapid
detection of the various infection sites, while addition at
the recruitment site is the better strategy for low levels of
infection allowing efficient prevention of escape.

6. In the context of influenza A

Influenza is a good example of a spatially localized viral
infection. The infection typically takes place in the upper
16 generations of the lungs, and the target cells of the
infection, the ciliated epithelial cells which cover the
respiratory tract, are fixed in place. In previous work
(Beauchemin et al., 2005), the CA model used here was
introduced and successfully calibrated to mimic a viral
infection with influenza A. Here, I revisit the CA model to
explore how the local epithelial cell regeneration rule and
the immune cell addition rule affect the agreement between
the CA model and the experimental data cited in
Beauchemin et al. (2005) for an uncomplicated influenza
A viral infection. Note that the typical uncomplicated
influenza A infection consists of a tracheobronchitis with
the additional involvement of small airways. Air flow in
large airways is usually unaltered, but small peripheral
airways are often affected. Also, uncomplicated influenza
causes little permanent damage in the lung (Wright and
Webster, 2001).
Because the target cells of influenza A are fixed, i.e. do

not move around in space, it is ultimately the speed of
diffusion of the virions over the epithelial layer which
determines whether the population of infected cells grows
locally around a productively infected cell, or in a more
homogeneous manner as the virions quickly spread out
over the target area. But since the lifespan of a productively
infected cell, the number of virions it produces, their
clearance rate, and their diffusion pattern in the cilia-
beaten mucus are not well known in the case of influenza
A, it is difficult to estimate how far and how quickly the
infection spreads.3 Consequently, it is hard to assess the
extent to which the infection process, as implemented in the
model, applies to the particular case of influenza A. For
example, in Section 3, it was shown that larger patches of
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infection lead to a decreased effective infection rate. But if
occasional jumps in viral spread to previously uninfected
areas were to occur in vivo, they could keep the effective
infection rate high, by giving the infection access to areas
where target cells are still plentiful. Nevertheless, there are
still some conclusions to be drawn from the results
presented above.

Originally, in Beauchemin et al. (2005), the use of a
global epithelial cell regeneration rule seemed appropriate
to mimic the replacement of dead cells by basal cells or by
cells from inferior epithelial layers. But in the particular
case of influenza A, the infection targets the airway
epithelium which consists of a single layer of cells every-
where except in the trachea (Potter, 2004). Thus, it would
seem that a local regeneration rule by which a dead
epithelial cell is replaced by a healthy cell only if one of its
healthy neighbours divides is more appropriate to model
cellular regeneration following a viral infection in the
lungs. As it turns out, the use of the local epithelial cell
regeneration rule does in fact improve the fit of the CA
model to available experimental data. Over the course of
an influenza infection, there should be about 10% of cells
dead on day 1, 40% on day 2 and 10% on day 5 (Bocharov
and Romanyukha, 1994). The global rule results in too fast
a regeneration, but the local rule improves the agreement
of the number of dead epithelial cells during regeneration.

The local epithelial cell regeneration rule also results in a
number of infected cells at the peak of the infection (�40%
of the total) which is smaller than that obtained with the
global regeneration rule (�50% of the total). Unfortu-
nately, there is no data available to assess whether the
reduction in the number of infected cells at the peak of the
infection constitutes an improvement of the model or not.
The other two existing mathematical models of influenza
A, which are ODE models, have arrived at numbers of
infected cells at infection peak of 37–66% (Baccam et al.,
2006), and 60–80% (Bocharov and Romanyukha, 1994) of
the total. Experimental data about the fraction of cells
infected at the peak of the infection would therefore be
invaluable in discriminating between the different models
for influenza A and help determine whether spatial
heterogeneity plays a role in the development and outcome
of the infection.

Finally, it has been suggested in Baccam et al. (2006) that
influenza resolution could be target-cell limited. This
means that the infection would die from the lack of new
cells to infect, rather than as a result of immune attacks.
With the model in its current state, target-cell limitation
can occur locally, as seen using the local epithelial cell
regeneration rule with the addition of immune cells at the
site of recruitment (see Section 5).

In the absence of immune cells, target-cell limitation is
such that sites of infection grow undisturbed and as the
circular waves of infection meet and annihilate, they leave
behind nothing but dead cells. Target-cell limited complete
resolution of the infection, without the death of all cells,
does not occur in the model because as long as the infection
wave encircles the dead epithelial cells, segregating them
from healthy cells, regeneration cannot be initiated. It is
only once immune cells have started attacking the
propagating infection wave, creating breaks where dead
cells can be in contact with healthy cells, that epithelial cell
regeneration can take place.
Target-cell limited resolution could be explored in the

absence of immune cells, for example, if the action of
cytokines were included in the model. The various
cytokines which get produced during an influenza infection
are known to hinder viral replication within infected cells,
and confer a certain level of protection from infection in
surrounding cells (Bocharov and Romanyukha, 1994;
Baccam et al., 2006; He et al., 2004; La Gruta, 2004;
Tamura and Kurata, 2004; Schmitz et al., 2005). In the CA
model, the cytokine response could be modelled by
introducing, for example, an inhomogeneous infection rate
or an infection rate that would depend on the number of
infectious neighbours. This could be the subject of future
research.

7. Conclusion

Here, the CA model introduced in Beauchemin et al.
(2005) was used to investigate the effects of the well-mixed
assumption on the dynamics of a localized viral infection.
It was shown that the distribution of initially infected cells
has a great impact on the dynamics of infection. This is
because, in the CA model, infectious cells can only infect
their immediate neighbours, and when organized in
patches, fewer infectious cells have healthy neighbours.
This is in line with the findings presented in Funk et al.
(2005), where the authors compared the results obtained
with the basic viral infection model, (1)–(3), to those
obtained with an equivalent spatially explicit model. They
remark that the spatial model displays a subdued viral
growth rate near the infection peak compared to the non-
spatial basic model. Funk et al. (2005) warn that such a
discrepancy between the basic viral infection model and the
equivalent spatially explicit model can lead to systematic
errors in estimating parameters from experimental data
around the infection peak. In the CA model presented here,
the effective infection rate is also subdued as patches of
infectious cells grow. This is because it is only the cells at
the edges of these patches that have healthy neighbours to
infect and thus can participate in the infection. As patches
grow, the perimeter to area ratio decreases and so does the
effective infection rate.
It was also demonstrated that the regeneration rule

chosen for the replacement of dead epithelial cells by
healthy ones can have an important impact on infection
dynamics. A global epithelial cell regeneration rule,
equivalent to simple ODE models, allows areas of dead
cells to be replenished by healthy cells even in the local
absence of healthy cells. This repopulation, in turn, allows
the infection to move back into the newly replenished area
it had previously infected, resulting in a greater number of
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infected cells. On the other hand, the slower local
regeneration rule, which requires the local presence of
healthy epithelial cells, limits the growth of the infection by
starving it of target cells and forces the infection to
propagate as a thin circular wave. Strain et al. (2002)
introduce a spatiotemporal model for the dynamics of HIV
in the spleen. Strain et al. point out that the main
differences between their spatial model and a mean field
approach such as the basic viral infection ODE model
(Perelson, 2002; Perelson et al., 1996) arise from the fact
that a viral burst only spreads to nearby cells. They also
conclude that in a spatial model, infection sustainability is
affected by the recovery rate of destroyed target cells, as
local cell destruction limits the spread of the infection
which can then only be sustained as a propagating wave.
Those findings are in agreement with those presented here.

Then, the choices of whether to add immune cells at
random locations on the simulation grid, equivalent to
simple ODE models, or at the site of recruitment were
compared to explore how they affect the dynamics of the
infection. It was shown that while addition at random sites
permits rapid detection of new infection sites, it makes it
harder to avoid infection escape from the immune
response. Consequently, random addition of immune cells
was found to be a better strategy at high infection levels,
while addition at the site of recruitment was the better
strategy at low infection levels.

The simulation has also been observed to yield chronic
infections for certain rules and patch sizes. It is important
to specify that the term ‘‘chronic infection’’ is used here to
designate a very small fraction (at most 2%) of infected
cells persisting beyond at least 60 days post-infection. At
this low level of infection, it is unlikely that patients would
be symptomatic. Since the patient’s nasal cavities in the
absence of symptoms (e.g. runny nose) are dryer, it would
be difficult to detect any virus shedding from nasal wash.
For this reason, I do not believe that current experimental
data for influenza can rule out the possibility of a low-level
persistent infection. Of course, if it were in fact the case
that a low-level of infection can persist, this could have
very interesting consequences for memory maintenance,
and could possibly provide a reservoir for epidemic spread
and strain maturation. Much more sensitive tests than
those currently in use would need to be performed to rule
out or confirm this possibility.

Cellular automaton type models (also referred to as
agent-based and individual-based models) of host–patho-
gen dynamics are gaining in popularity. Most often, these
spatiotemporal models, such as those developed by An
(2001), Edelstein-Keshet and Spiros (2002), Segovia-Juarez
et al. (2004), Mallet and De Phillis (2006), and Zorzenon
dos Santos and Coutinho (2001), are very specific models
aimed at capturing the dynamics of a particular disease to
try and further our understanding of the processes involved
in that disease. Other works have used spatiotemporal
models to specifically investigate the effects of the spatial
distribution of agents on the evolution and outcome of
infections, and chose to remain more general in their
investigation by not considering a particular viral infection
(Funk et al., 2005; Louzoun et al., 2001). In Strain et al.
(2002), the authors both investigated the effects of space on
the dynamics of a viral infection and calibrated their model
to a particular disease: HIV. Unfortunately, their model
makes the assumption that T cells, the target cells of HIV
virus, are fixed in space, an assumption that is not realistic
given the known patterns of movement of T cells within
lymph nodes (Miller et al., 2002, 2003, 2004a, b; Mempel et
al., 2004), and this may adversely affect the results. Here,
we have explored the effects of relaxing the well-mixed
assumption on the spread of a localized viral infection. We
have shown that the spatial distribution of agents does
have an impact on the severity, duration, and outcome of
such infections. In Beauchemin et al. (2005), the model
used here was calibrated for influenza A, and was shown to
be accurate enough to quantitatively reproduce the
response to an uncomplicated infection with this virus.
The applicability of the findings presented here follow from
that model.
In the present work, the effect of the spatial distribution

of infected cells on the dynamics of the infection arises
from the fact that the infection can only spread from one
infectious cell to its neighbours. The applicability of the
findings presented here largely depends on the accuracy of
this assumption, namely whether the infection tends to
quickly spread over the tissue or grow locally around
infected sites. Nonetheless, I have shown in this paper that
a local epithelial cell regeneration rule, where a dead cell is
replaced by a healthy cell when one of its immediate
healthy neighbour divides, improves the fit of the CA
model to experimental data in the case of an uncomplicated
viral infection with influenza A.
Whether or not there exist in vivo virus–host systems

where the infection grows locally from neighbour to
neighbour, such systems do exist in vitro and are used to
address questions such as how viral spread is inhibited by
cellular antiviral activities (Duca et al., 2001; Lam et al.,
2005). The team of Dr. John Yin, at the University of
Wisconsin—Madison, have introduced a new assay meth-
od which consists of a monolayer cell culture covered in an
agar solution, which prevents the diffusion of virions at the
surface of the cell monolayer such that the infection can
only spread to immediate neighbours (Duca et al., 2001;
Lam et al., 2005), as is the case in the CA model used here.
By complementing these assay experiments with simula-
tions from the CA model used here, significant questions
could be addressed. For example, by testing various
hypotheses about the production and spread of interferon,
and comparing the results of the CA model to that of the
experimental assays, it may be possible to discriminate
among various potential mechanisms and extract para-
meters for those mechanisms, such as rate of production/
clearance of interferon. The combination of results
obtained through such experimental techniques with the
flexibility and simplicity offered by spatial in silico
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Table A.1

Relationship between the notation used in this document and that of Beauchemin et al. (2005)

Notation in Beauchemin et al. (2005) New notation Description

FLOW_RATE n Speed of immune cells

IMM_LIFESPAN dM Lifespan of an immune cell

CELL_LIFESPAN dH Lifespan of healthy epithelial cells

INFECT_LIFESPAN dI Lifespan of infected epithelial cells

INFECT_INIT rC Proportion of initially infected cells

INFECT_RATE b Rate of infection of neighbours

EXPRESS_DELAY tE Delay from containing to expressing

INFECT_DELAY tI Delay from containing to infectious

DIVISION_TIME b Duration of epithelial cells’ division ðG1!MÞ

BASE_IMM_CELL rM Minimum density of immune cells per epithelial cell

RECRUITMENT rM Number of immune cells recruited when one recognizes the virus

New parameter s Number of lattice sites in a patch of initially infected cells

C. Beauchemin / Journal of Theoretical Biology 242 (2006) 464–477476
modelling could lead to great advances in our under-
standing of host–pathogen interactions.
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