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We analyzed the dynamics of an influenza A/Albany/1/98 (H3N2) viral infection, using a set of

mathematical models highlighting the differences between in vivo and in vitro infection. For example,

we found that including virion loss due to cell entry was critical for the in vitro model but not for the in

vivo model. Experiments were performed on influenza virus-infected MDCK cells in vitro inside a

hollow-fiber (HF) system, which was used to continuously deliver the drug amantadine. The HF system

captures the dynamics of an influenza infection, and is a controlled environment for producing

experimental data which lend themselves well to mathematical modeling. The parameter estimates

obtained from fitting our mathematical models to the HF experimental data are consistent with those

obtained earlier for a primary infection in a human model. We found that influenza A/Albany/1/98

(H3N2) virions under normal experimental conditions at 37 �C rapidly lose infectivity with a half-life of

�6:6� 0:2 h, and that the lifespan of productively infected MDCK cells is �13 h. Finally, using our

models we estimated that the maximum efficacy of amantadine in blocking viral infection is �74%, and

showed that this low maximum efficacy is likely due to the rapid development of drug resistance.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Influenza A has become a growing concern for health
authorities worldwide. The annual cost of influenza illness and
the threat of an imminent pandemic makes it all the more
necessary to revisit the treatment options currently available. In
this paper, we report on a series of experiments performed in vitro
inside a hollow-fiber (HF) system. Madin-Darby canine kidney
(MDCK) cells were infected with influenza A/Albany/1/98 (H3N2)
while subjected to a constant concentration of the drug
amantadine.

Until recently, adamantane drugs, such as amantadine and
rimantadine, were the primary prophylaxis and treatment
method used to prevent and control influenza infection. When
used prophylactically, the effectiveness of adamantanes against
sensitive strains of influenza A is between 80% and 90% (Bright et
al., 2006). When used as treatment it can reduce the duration of
illness by 1.5 days if administered within 48 h of symptom onset
ll rights reserved.
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min).
(Bright et al., 2006). Unfortunately, resistance to adamantanes
emerges rapidly during treatment and resistant variants show no
evidence of fitness impairment and are readily transmissible
(Deyde et al., 2007). This process, further amplified by the massive
use of adamantanes, has led to wide-spread resistance among
circulating influenza strains worldwide with 90.5% and 15.5%
resistance prevalence among H3N2 and H1N1 strains, respectively
(Deyde et al., 2007). However, clade 2 H5N1 viruses from Africa
and parts of Eurasia are still susceptible to adamantanes (Writing
Committee of the Second World Health Organization Consultation
on Clinical Aspects of Human Infection with Avian Influenza A
(H5N1) Virus, 2008). In addition, the efficacy of combination
therapy, including adamantanes and neuraminidase inhibitors, is
an active subject of research (see Ilyushina et al., 2006; Gubareva
et al., 2000). Thus, in these contexts, understanding the dynamics
of adamantane treatment will be important to improve its effect.

In this paper, we use mathematical models to study the effect
of drug treatment on the kinetics on influenza within the HF
system. We analyzed the results of in vitro influenza infection of
MDCK cells in the presence of a constant concentration of
amantadine. To this end, we use variations of the ordinary
differential equation (ODE) models proposed by Baccam et al.
(2006) and via nonlinear parameter estimation methods
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parametrized the kinetics of influenza dynamics and the effects of
drug dosage on the infection in the HF system. Clearly, many
features of in vivo infection, such as the effects of innate and
adaptive immune responses, mucociliary clearance and virion
transport, differ from those found in vitro. The models that we
develop highlight some of these differences and the changes in
modeling strategy needed to accommodate them.
2. Materials and methods

2.1. Cells and viruses

MDCK cells (ATCC CCL-34) were obtained from the American
Type Culture Collection and maintained in minimal essential
medium (MEM) supplemented with 10% fetal bovine serum, 1%
sodium pyruvate, 1% MEM nonessential amino acids, and 1%
penicillin–streptomycin solution. A/Albany/1/98 was obtained
from the Clinical Microbiology Laboratory at the Albany Medical
Center Hospital. Amantadine was purchased from Fluka, Switzer-
land.

2.2. HF system

In vitro HF models for influenza infection (see Fig. 1) were
adapted from Bilello et al. (1994) with the following modifica-
tions. Each HF cartridge was charged with 108 MDCK cells in virus
growth medium (MEMþ 0:2%BSAþ 2mg=mL of TPCK-treated
trypsin þ1% penicillin–streptomycin solution) and the infection
was initiated by adding 100 cells pre-infected with virus. Drug
delivery is controlled by a computer-driven syringe pump
attached to the central reservoir, which permits the precise
delivery of drug. For simplicity, the experiments described here
were performed at a constant drug concentration over the full
duration of the experiment. Thus, only the central reservoir was
used, which contained the drug at steady-state concentration. The
infection takes place in the extracapillary space (ECS): the 15 mL
Fig. 1. Diagram of the hollow-fiber system: The HF system allows virus-infected

cells to produce high titers of cell-free virus within the HF bundle. The

extracapillary space (ECS) is separated from the medium coming from the central

reservoir with pore sizes that are large enough to allow nutrients, small

compounds, and cellular metabolites to traverse in and out of this ECS but too

small for viruses and virus-infected cells to leave the ECS. The ECS can be sampled

through the sampling ports to determine the number of virus-infected cells and

the amount of cell-free virus in the HF unit over time.
of HF reactor volume not occupied by the capillary bundles. Two
ports located on top of the HF reactor are used to deposit or
remove materials from the ECS. At times t ¼ 22, 28, 46, 72, 96, and
144 h, 3 mL of the 15 mL ECS solution are harvested for analysis.
Cells and virus are obtained by mixing the fluid in the ECS using
the two syringes attached to the HF ports, sampling the ECS
solution from one port, mixing the fluid in the ECS again, sampling
the ECS solution from the opposite port and mixing a third time
and then sampling the ECS from the first port. Approximately 1 mL
is removed each time for a total of 3 mL. After sampling, medium
is drawn into the ECS from the central reservoir so that the 15 mL
are restored.

2.3. Plaque assays

To quantitate the amount of infectious virus taken from the HF
at each time point, the number of plaque forming units (PFU)
present in the clarified medium was determined by plaque
assay as described by Sidwell and Smee (2000). Serial 10-fold
dilutions of clarified virus supernatant were made in virus growth
medium. The MDCK cell monolayers were washed twice with
virus growth medium, and 0.5 mL of each virus dilution was
added to the monolayers in triplicate. After a 1-h adsorption
period at 37 �C under an atmosphere of 5% CO2, the inoculum was
removed and 5 mL of virus growth medium supplemented
with 1% DEAE dextran and 0.3% agar was added to each plate.
After 2 days of incubation at 37 �C under an atmosphere of
5% CO2, the agar was removed, the monolayers were stained with
0.1% crystal violet in 20% ethanol, and the number of PFU were
counted visually.

2.4. Parameter fitting

The models that we develop consist of systems of ODEs. These
equations were solved numerically using Octave 2.1.73 (Eaton et
al., 2007) and its lsode function, which uses Gear’s method if the
equations are stiff, or the Adam’s method (predictor–corrector) if
they are not. The delay differential equation model (which we
refer to as the delay model) was solved using Matlab’s dde23

function in Octave.
The values of the models’ parameters were estimated by fitting

log10ðVÞ predicted by numerically solving the model to log10 of the
experimental viral titer. The experimental viral titer considered at
each time point represents the geometric average of the three
samples collected at that time point. In addition, note that
log10ðVÞ rather than V was used for the fits because the
measurement errors for viral titer are thought to follow a log-
normal distribution. The fit was performed using the Octave 2.1.73
(Eaton et al., 2007) leasqr function, which is an implementation
of the Levenberg–Marquardt nonlinear regression method (Seber
and Wild, 1989). The 95% confidence interval (95% CI) provided for
each parameter estimate corresponds to the 25th and 975th
instances of 1000 ordered bootstrap replicates (Efron and
Tibshirani, 1986).

To quantify the quality of each fit, we computed the sum of
squared residuals (SSR) between the experimental viral titer and
the models’ results. In order to compare models with different
numbers of parameters (e.g. the simple vs eclipse model or the
simple model with six free parameters vs the simple model with
five free parameter and one fixed parameter), we also computed
the small-sample (second order) Akaike’s ‘‘an information
criterion’’ ðAICCÞ for each fit using

AICC ¼ Npts logeðs
2Þ þ 2K þ

2KðK þ 1Þ

Npts � K � 1
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which when applied to our case of least square fits, can be re-
written as

AICC ¼ Npts loge
SSR

Npts

� �
þ

2ðNpar þ 1ÞNpts

Npts � Npar � 2

where K ¼ Npar þ 1, Npar is the number of parameters of the fitted
model and the þ1 term arises because we estimate the variance
s2, by SSR=Npts, where Npts is the number of data points fitted by
the model, and SSR is the sum of squared residuals (Burnham
and Anderson, 2002). The model with the lowest AICC is
considered to be the better model given the experimental data
it is approximating.
0 6 12 18 24 30 36 42 48 54

time (hour)

10-5

Fig. 2. Rate of loss of infectivity of influenza virions. A linear least square regression

yielded a rate of loss of infectivity (slope of the best-fit line) of

c ¼ 0:105� 0:003 h�1. Since the presence of amantadine in various concentrations

(red, green, blue) did not appear to affect the rate of loss of infectivity, data from all

three experiments were combined as a single set for fitting.
3. Results

3.1. Rate of loss of viral infectivity

In our experiments, viral titer is determined from plaque
assays, which yield the concentration of infectious virions (pfu/
mL). Between sampling times virions cannot leave the extra-
cellular space of the HF. Thus, the loss of infectious virions can
only come from the physical degradation of virion integrity, loss of
virions through cell entry, or the loss of virion infectivity such that
they no longer form plaques when used in plaque assays. The cell-
independent loss of virion infectivity was determined by means of
the following simple experiment. Virions were incubated in the
same medium and under the same conditions that exist in the HF
system but in the absence of any cells. Viral titer was determined
at various times by performing plaque forming assays on the virus
collected from the container. This scenario can be described by

dV

dt
¼ �cV

which integrates to VðtÞ ¼ V0 e�ct , where VðtÞ and V0 are the
infectious influenza virus titers at time t and time 0, respectively,
and c is the first order rate constant characterizing the loss of viral
infectivity we wish to determine. A linear regression was
performed to fit

logeðVðtÞÞ ¼ logeðV0Þ � ct

to the plaque assay triplicates from three different experiments:
(i) in the absence of amantadine; (ii) with amantadine at a
concentration of 5:3mM; and (iii) with amantadine at a concen-
tration of 53mM. Since the presence of amantadine did not seem
to affect the rate of loss of infectivity (see Fig. 2), data from all
three experiments were combined into a single set. The linear
least square regression performed on the combined data set
yielded a rate of loss of infectivity of c ¼ 0:105� 0:003 h�1,
corresponding to a half-life of 6:6� 0:2 h for infectious influenza
A/Albany/1/98 (H3N2) virions at 37 �C. Viral infectivity decays
should be taken into consideration in the context of infection
experiments. For example, if a viral sample is not used quickly, the
actual multiplicity of infection (MOI) may not be the desired MOI.
3.2. Preliminary models

3.2.1. Simple model

The model

dT

dt
¼ �ð1� �ÞbTV (1)

dI

dt
¼ ð1� �ÞbTV � dI (2)
dV

dt
¼ pI � cV (3)

is a modified version of the simple infection model proposed in
Baccam et al. (2006) where a term for the effect of amantadine
has been added. T is the density of available target cells, I the
density of infected cells secreting virions, V is the infectious viral
titer as detected by plaque assays.

The parameters are such that b is the rate at which virions
infect the available target cells, d is the rate of loss of productively
infected cells, p is the production rate of infectious virions by
productively infected cells, and c is the rate of loss of infectious
virions.

The drug used in the experiments, amantadine, is an
adamantane. Adamantanes act as antiviral agents by blocking
the ion channel activity of influenza virus’ matrix M2 protein
(Takeda et al., 2002; Schnell and Chou, 2008; Stouffer et al., 2008).
Virions, which bind to cell surface sialic acid receptors, are
typically brought into a cell through the endocytic pathway. The
endocytic vesicles are acidified and influenza virus’ M2 protein
allows the interior of the virus to also acidify. In the presence of
adamantanes, the virion interior does not acidify and this prevents
viral uncoating. This, in turn, hinders the virions’ ability to
replicate and successfully infect new cells (Takeda et al., 2002;
Schnell and Chou, 2008; Stouffer et al., 2008). For this reason, we
chose to model amantadine as affecting b, the rate at which
virions successfully infect new cells. For this purpose, we
introduce a parameter for drug efficacy, �ðtÞ, which depends on
the drug concentration, DðtÞ. The pharmacodynamic effect of a
drug is frequently modeled using some form of the Emax model
(Holford and Sheiner, 1981). Here, we use

�ðtÞ ¼
�maxDðtÞn

DðtÞn þ ICn
50

(4)

where DðtÞ is the drug concentration at time t, �max is the
maximum effect of the drug such that 0o�maxp1, IC50 is the
concentration of drug necessary to inhibit the response by 50%,
and the parameter n, called the Hill coefficient, controls the
steepness of the sigmoidal function. In preliminary fits, we
determined that n ¼ 1 gives a reasonable fit to the drug effect
and thus we fixed n to be 1. Also, in the experiments reported
here, DðtÞ ¼ D is held constant such that �ðtÞ ¼ � is also constant
over time.
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3.2.2. Eclipse model

A more biologically accurate model should include an eclipse
phase (Baccam et al., 2006). The eclipse phase is the period of
time that elapses between the entry of the virus into the target
cell and the release of virions produced by that newly infected
cell. The eclipse model is

dT

dt
¼ �ð1� �ÞbTV (5)

dE

dt
¼ ð1� �ÞbTV � kE (6)

dI

dt
¼ kE� dI (7)

dV

dt
¼ pI � cV (8)

where � is as in (4). T , I, and V are as in (1)–(3), and E is the density
of infected cells in the eclipse phase, which have not yet begun
releasing virions. The parameters are also as in (1)–(4) with the
addition of parameter k which is the rate at which newly infected
cells move out of the eclipse phase and start releasing virions. In
other words, 1=k is the mean time elapsed between the successful
infection of the cell and the initial release of virions produced by
that cell.

3.2.3. Delay model

Another way to include an eclipse phase is to introduce it as a
delay in the simple model such that

dT

dt
¼ �ð1� �ÞbTV (9)

dI

dt
¼ ð1� �ÞbTðt � tÞVðt � tÞ � dI (10)

dV

dt
¼ pI � cV (11)

where � is as in (4). T , I, and V are as in (1)–(3), and t is the delay
between viral entry into a cell and the start of virus production by
that cell. In other words, once a virion has entered a cell the latter
is removed from the target population immediately, but only
enters the productively infected cell population after a time t.
During the eclipse phase the cell does not contribute to the
dynamics of the simulation. We also neglect cell death during the
eclipse phase consistent with our neglecting death of target cells
during this brief infection. We propose this model as an
Table 1
Parameter estimates for the simple, eclipse, and delay models

Param. Simple model (95% CI) Eclipse m

b (mL h�1) 7:5� 10�7
ð4:2214Þ � 10�7 23� 10�7

k or t (h�1 or h) – – 0.17

d (h�1) 0.066 (0.049–0.084) 0.075

p (h�1) 0.064 (0.036–0.105) 0.084

IC50 (mM) 0.33 (0.15–0.84) 0.26

�max 0.67 (0.61–0.73) 0.82

1=k or t (h) – – 6.0

1=d (h) 15 (12–21) 13

p=d 0.97 (0.68–1.4) 1.1

R0 46 (33–69) 170

SSR 4.9 (2.4–6.6) 4.1

AICC �57 (36 pts, 5 par) �60
alternative to the eclipse model above, where cells infected by a
virion enter the eclipse compartment and remain there on average
for time 1=k, with some cells becoming infectious (migrating to
the I compartment) almost immediately and others taking as
much as an infinite amount of time to become infected. While this
fixed delay model does not provide the variability in the transition
times that one would expect with any biological system, it does
prevent unrealistically short or long transitions times. Models
with a distributed delay have been used to model HIV infection
(Mittler et al., 1998) and could also be used here, but involve
adding extra parameters.

3.2.4. Basic reproductive number

In order to quantitate the ability of influenza to spread in the
HF system, we computed the basic reproductive number, R0, using
the parameters estimated by fitting our model to the viral titer
data. The basic reproductive number represents the average
number of cells that will become infected as a result of
introducing a single infected cell into a population of fully
susceptible cells. For all three of our models, it is given by

R0 ¼
p

d
�
bT0

c
(12)

where T0 is the density of target cells available at time t ¼ 0.
Note that p=d is the average number of virions produced by an
infected cell over its lifespan, and bT0=c is the average number of
cells infected per virion. Including an eclipse phase does not
alter this formula as infected cells only produce virus at rate p

after the eclipse phase and during their average time of viral
production 1=d.

3.2.5. Estimation of key parameters of influenza dynamics

We used the simple, eclipse, and delay models to fit the viral
titer data over time. To this end, each model was fitted
simultaneously to data from six different continuous-infusion
experiments each done at a different fixed drug concentration, D.
In our fitting only D was allowed to vary between experiments. In
Table 1, we present the best fit parameters obtained, and Fig. 3
shows the fits of the models to the experimental results.

Since infection in our experiments is initiated with 108

uninfected cells mixed with 100 infected cells deposited into
the 15 mL HF reactor, the initial conditions used are T0 ¼

6:7� 106 cell mL�1, E0 ¼ 0, I0 ¼ 6:7 cell mL�1, and V0 ¼ 0. In
addition, at each sampling time, we reduce T , E, I, and V by 20%
because 3 mL of the 15 mL of the HF extracellular fluid are
harvested for sampling. Below (see Viral Loss and Production) we
odel (95% CI) Delay model (95% CI)

ð6:3253Þ � 10�7 56� 10�7
ð9:72160Þ � 10�7

(0.071–62) 4.8 (1.2–6.0)

(0.057–0.18) 0.070 (0.055–0.086)

(0.049–0.23) 0.098 (0.056–0.15)

(0.13–0.60) 0.16 (0.068–0.45)

(0.68–0.86) 0.92 (0.75–0.96)

(0.016–14) 4.8 (1.2–6.0)

(5.4–17) 14 (12–18)

(0.78–1.6) 1.4 (0.92–1.9)

(44–290) 491 (75–1300)

(1.9–5.4) 4.2 (1.9–5.3)

(36 pts, 6 par) �60 (36 pts, 6 par)
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Fig. 3. Infectious viral titer predicted by the three models. The curves represent the best fit of the infectious viral titer, V , predicted by the simple model (solid), (1)–(3), eclipse

model (dashed), (5)–(8), and delay model (red), (9)–(11), to the plaque assay data (square) from experiments performed on MDCK cells in the HF system at various drug

dosages. The vertical bars on the experimental points indicate the standard deviation of the experimental measurements done in triplicate. Each panel corresponds to a

different drug concentration—indicated in the top right corner—maintained constant over the full duration of the experiment. All the data were fitted simultaneously and

the parameter values obtained are given in Table 1.
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will examine the effect of assuming that the cells adhere to the
fiber and thus are not removed as readily as virions. Additionally,
we fixed c ¼ 0:105 h�1.

The fitted models are in good agreement with the experi-
mental data, and the AICC values indicate that the eclipse and
delay models are slightly better supported by the experimental
data than the simple model. Unfortunately, the parameter
estimates suggest that over its lifespan, an infected cell will
producep=d ¼ 0:97 (95% confidence interval: 0.68–1.4) infectious
virions with the simple model, 1.1 (0.78–1.6) with the eclipse
model, or 1.4 (0.92–1.9) with the delay model. If an infected cell
did indeed produce less than one infectious virus over its infected
lifespan, the infection could not be sustained. Strangely, however,
due to the initially large density of target cells
(T0 ¼ 6:7� 106 cells=mL) and the small clearance rate of virions,
the basic reproductive numbers computed using (12) from the
parameter estimates are much greater than one and much greater
than the average number of infectious virions produced. But in
order to be meaningful, the basic reproductive number should be
smaller than the number of virions produced by a cell over its
infected lifespan: at best, each infectious virion will infect only
one cell. This is a clear indication that the models are not properly
capturing the mechanisms involved in the infection process, or
that our parameter estimation procedure is not providing accurate
estimates.
3.3. Incorporating loss of virions due to cell entry

In models of in vivo viral infection virus loss due to entry into
target cells is frequently neglected as this process is a minor
mechanism of virion loss compared with processes such as
phagocytosis and mucociliary clearance. An important conse-
quence of the value obtained for the virion clearance rate is that in
our models, the rate at which a virion is lost due to target cell
entry, bT , is not negligible compared to the rate at which a virion
loses infectivity, c. As per our parameter estimates, the rate of loss
of infectious virus due to loss of infectivity is c ¼ 0:105 h�1 and
the rate of loss of virus due to cell entry at time t ¼ 0, is
bT0 ¼ 5:0 h�1. Thus, loss of virions through cell entry cannot be
neglected and a term needs to be added in all three models to
incorporate the effect of virus entry into target cells, namely

dV

dt
¼ pI � cV � gTV (13)

where g is the rate at which infectious virions are lost due to
target cell entry. Note that this new formulation of the model will
affect the calculation of the basic reproductive number, which
should now be computed as

R0 ¼
p

d
�

bT0

c þ gT0
(14)

We repeated the fits to the three models where equations (3),
(8) and (11) were replaced with (13), and the viral clearance rate
was still held fixed at c ¼ 0:105 h�1. The best-fit parameter
estimates are presented in Table 2. The fit of the models to the
experimental data are presented in Fig. 4, and the predicted
evolution of the target and infected cell populations over the
course of the infection using the simple model are presented in
Fig. 5.

The fits obtained when including loss of virus due to cell entry
are better (smaller AICC) than those obtained previously, and the
simple model is now statistically better supported by the
experimental data than the eclipse and delay model.

It is interesting to compare the parameter estimates obtained
here for MDCK cells infected with influenza A/Albany/1/98
(H3N2) in the HF system to those obtained in Baccam et al.
(2006) where similar models were used to analyze experimental
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Table 2
Parameter estimates for the three models with virion entry into cells

Param. Simple model (95% CI) Eclipse model (95% CI) Delay model (95% CI)

b (mL h�1) 8:7� 10�7
ð5:1216Þ � 10�7 18� 10�7

ð7:1254Þ � 10�7 9:6� 10�7
ð6:1219Þ � 10�7

k or t (h�1 or h) – – 0.31 (0.082–23) 0.22 (0.0028–1.3)

d (h�1) 0:076 (0.063–0.093) 0.076 (0.063–0.14) 0.075 (0.062–0.090)

p (h�1) 0.13 (0.075–0.24) 0.12 (0.072–0.28) 0.12 (0.082–0.20)

g (mL h�1) 1:3� 10�7
ð0:3723:3Þ � 10�7 0:61� 10�7

ð0:07222:2Þ � 10�7 1:1� 10�7
ð0:3822:3Þ � 10�7

IC50 (mM) 0.40 (0.23–0.78) 0.30 (0.17–0.68) 0.38 (0.21–0.76)

�max 0.56 (0.51–0.64) 0.74 (0.55–0.83) 0.60 (0.54–0.71)

1=k or t (h) – – 3.2 (0.041–12) 0.22 (0.0028–1.3)

1=d (h) 13 (11–16) 13 (6.9–16) 13 (11–16)

p=d 1.7 (1.1–2.8) 1.6 (1.0–2.5) 1.7 (1.2–2.4)

b=g 6.9 (2.9–21) 29 (5.1–330) 8.8 (5.0–26)

R0 11 (7.5–19) 36 (10–120) 13 (9.5–25)

SSR 3.6 (1.7–4.5) 3.7 (1.7–4.5) 3.6 (1.7–4.7)

AICC �65 (36 pts, 6 par) �61 (36 pts, 7 par) �61 (36 pts, 7 par)
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Fig. 4. Infectious viral titer predicted by the three models with virion entry into cells. The curves represent the best fit of the infectious viral titer, V , predicted by the simple

model (solid), eclipse model (dashed), and delay model (red), modified to include loss of virus due to cell entry as in Eq. (13), to the plaque assay data (square) from

experiments performed on MDCK cells in the HF system at various drug dosages. Each panel corresponds to a different drug dosage experiment where the drug is

maintained at a constant concentration—indicated in the top right corner—over the full duration of the experiment. All the data were fitted simultaneously and the

parameter values obtained are given in Table 2.
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data from human volunteers infected with influenza A/Hong
Kong/123/77 (H1N1) in the absence of drug (� ¼ 0). Table 3
presents the results side-by-side for the two systems.

For human infection, we found the length of the eclipse phase,
1=k, to be about 6.0 h, almost twice the 3.2 h found here for the
MDCK HF system. This difference, however, is not statistically
significant due to the wide confidence interval on both parameter
estimates. Both values are also in rough agreement with values
reported elsewhere (Bocharov and Romanyukha, 1994; Möhler et
al., 2005).

Fitting the data from human infection, Baccam et al. (2006)
estimated the length of time over which infected cells produce
virions, 1=d, to be about 4.6–6.0 h, about half of the 13 h found
here for the MDCK HF system. The smaller productively infected
cell lifespan found for in vivo infection in humans may reflect the
active killing of infected cells by the immune system. It could also
be due to differences between MDCK cells used in our experi-
ments and human lung epithelial cells. Also, note that in Baccam
et al. (2006), we used models that neglected the loss of virions
due to cell entry as non-specific and immune-mediated clearance
of infectious virions in vivo would also be taking place.

The fits to the experimental viral titer allowed us to obtain new
estimates for the number of infectious virions a cell is expected to
produce over its lifespan. We found p=d ¼ 1:7 (1.1–2.8) virions
from the simple model, 1.6 (1.0–2.5) from the eclipse model, or 1.7
(1.2–2.4) in the delay model. These estimates are greater than one



ARTICLE IN PRESS

24 48 72 96 120 144
0

0.2

0.4

0.6

0.8

1

0.0 µM

Target (T)
Infected (I)
Dead (D)

24 48 72 96 120 144

0.05 µM

24 48 72 96 120 144

0.5 µM

24 48 72 96 120 144

time (hour)

0

0.2

0.4

0.6

0.8

1

fr
ac

tio
n 

of
 to

ta
l c

el
ls

5.3 µM

24 48 72 96 120 144

16 µM

24 48 72 96 120 144

53.3 µM

Fig. 5. Prediction of the evolution of the cell populations over time. The populations of target, infected, and dead cells over the course of the infection are predicted using the

simple model modified to include loss of virus due to cell entry as in Eq. (13). The dead cells, D, are defined as dD=dt ¼ dI, and the fraction of total cells are computed by

dividing T , I, or D by (T þ I þ D) at each time point. Each panel corresponds to a different drug dosage experiment where the drug is maintained at a constant

concentration—indicated in the top right corner—over the full duration of the experiment. The parameter values used are given inTable 2.

Table 3
Comparison of parameter values for human and MDCK cells in a hollow-fiber system

System Model Parameters

tE
a (h) (95% CI) (h) 1=db (h) (95% CI) (h) R0

c (95% CI)

Simple – – 6:0 (3.9–9.2) 11 (6.6–19)

Humand Eclipse 6.0 (4.6–7.9) 4.6 (2.8–7.5) 22 (10–46)

Simple – – 13 (11–16) 11 (7.5–19)

HFe Eclipse 3.2 (0.041–12) 13 (6.9–16) 36 (10–120)

Delay 0.22 (0.0028–1.3) 13 (11–16) 13 (9.5–25)

a Length of the eclipse phase where tE ¼ 1=k (eclipse) or t (delay).
b Length of time over which infected cells produce virions.
c Basic reproductive number.
d Averaged results for infection of 6 human volunteers with influenza A/HK/123/77 (H1N1) from Baccam et al. (2006).
e Results from the hollow-fiber (HF) system as per Table 2.

C.A.A. Beauchemin et al. / Journal of Theoretical Biology 254 (2008) 439–451 445
for all models, but are still low. It is important to note that in the
plaque assay, one only measures infectious virions. However, we
expect that the majority of viral particles produced by an infected
cell are non-infectious. To test this, in another set of experiments,
performed on MDCK cells in the HF system, we assayed both the
infectious viral titer (measured through plaqueassays) and the
total viral titer (measured through PCR assays). We found that
infectious virions made up only about 1 in 10,000 virions (data
not shown). Thus, assuming that an infected cell will produce 1
infectious virion for each 10,000 virions produced, an infected cell
is expected to produce about 17,000 virions over its lifespan. This
is in agreement with values suggested elsewhere (Bocharov and
Romanyukha, 1994; Möhler et al., 2005).

We also computed the basic reproductive number using (14)
and the parameter estimates found for both models. We found it
to be 11 (7.5–19) for the simple model, 36 (10–120) for the eclipse
model, and 13 (9.5–25) for the delay model. These values compare
well with the basic reproductive numbers of 11 (6.6–19) and 22
(10–46) for the human infection data analyzed using the simple
and eclipse models, respectively (Baccam et al., 2006), but they
are still larger than our estimate of the number of infectious
virions produced by an infected cell over its lifespan. Furthermore,
the rate at which infectious virions infect new cells, b, is larger
than the rate at which infectious virions are lost due to cell entry,
g, suggesting that a single infectious virion can infect more than
one cell. These odd results are addressed in detail below.
3.4. Viral loss and production

The influenza infection process is such that a target cell
becomes productively infected after one or more virions have
entered it. Thus, one would expect the rate at which virions are
cleared due to entry into target cell, g, to be either larger or at least
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equal to the rate at which virions infect cells, b. Unfortunately, our
best parameter estimates suggest that g is smaller than b. If we
force b ¼ g, the fit of the simple model is not as good ðAICC ¼ �51Þ
as when g is free ðAICC ¼ �65Þ, with the model showing
systematic deviations from the data. How then can this be
explained?

One possible explanation is that the number of virions counted
by the plaque assay underestimates the true number of infectious
virions. Say the true number of infectious virions, Vreal, is such
that Vreal ¼ aV , where V is the number of infectious virions
counted by the plaque assay and a41. If this were the case, our
model with virion entry into cells would become

dT

dt
¼ �ð1� �Þ

b
a

TVreal

dI

dt
¼ ð1� �Þ

b
a

TVreal � dI

dVreal

dt
¼ apI � cVreal � gTVreal

where V was replaced with Vreal=a. Thus, the underestimation of
the number of infectious virions would affect the rate of infection
of target cells, b, and the rate of production of virus, p, such that
breal ¼ b=a, and preal ¼ ap. This means that the rate of infection of
target cell by virions, breal, could in fact be equal to or greater than
the rate of virus entry into target cells, g, provided that a is such
that breal ¼ b=apg. While this would not affect the value of the
basic reproductive number, it could explain why we obtained
values of R0 that were greater than the number of infectious
virions produced by a cell over its infected lifespan. Indeed, we
would have

R0 ¼
pa
d
�
ðb=aÞT0

c þ gT0

and if a is such that b=apg, then R0 would indeed be smaller than
ðpaÞ=d ¼ preal=d.

In order to have b=apg, a would have to be at least 6.9 (2.9–21)
with the simple model, 29 (5.1–330) with the eclipse model, or 8.8
(5.0–26) with the delay model when including virion entry into
cells (see b=g in Table 2). Assuming that exactly one infectious
virus is lost every time a cell is infected implies breal ¼ b=a ¼ g.
That is, a ¼ 6:9 in the simple model, 29 in the eclipse model, and
8.8 in the delay model. Since our estimated values of p=d are 1.7,
1.6, and 1.7 for the simple, eclipse, and delay models, respectively,
such values of a imply that an infected cell is expected to produce
at least ðpaÞ=d�12 infectious virions according to the simple
model or as many as 46 infectious virions according to the eclipse
model, or 15 according to the delay model. These numbers are
now larger than their respective basic reproductive numbers of 11,
36, and 13, as they should be. But what could account for the fact
that no more than 14% ( 1

6:9) of infectious virions are being
counted?

Several factors may be responsible for this underestimation of
the true count of infectious virions. The most significant
contribution likely comes from the fact that the virions sampled
from the HF reactor are frozen for storage, and subsequently
thawed before they are counted by plaque assay. Experimental
data suggests that there is a 10-fold reduction in plaque counts
after each freeze/thaw cycle: a loss of 90% of infectious virions
(data not shown). Infectious virions may also be lost between the
time of thawing and plaquing because the rate of loss of infectivity
is high, and may be even higher depending on how carefully the
virions were handled. In addition, plaques that are not well
separated may be miscounted resulting in a systematic under-
estimation of infectious virus count.
Unfortunately, without a good estimate of the ratio of counted
infectious virions to true number of infectious virions, our
estimates for the production rate of infectious virus, the infection
rate of cells, and the number of virions needed to infect a cell need
to be interpreted with caution. Additional experiments are needed
in order to estimate a, andthus to obtain better estimates for these
parameters.

3.5. HF system sampling

At each sampling time, we reduced T, E, I, and V by 20%
because 3 mL of the 15 mL of the HF extracellular fluid is harvested
for sampling. But it is possible that inside the HF, uninfected cells
and cells in the early stage of infection attach themselves solidly
to the surface of the capillary bundle. In that case, less than 20% of
the cells present in the HF system may be harvested. We explored
the effect of having anywhere between 0–20% of uninfected and/
or infected cells removed at each sampling time on the parameter
estimates obtained using the simple model with virion entry into
cells. We found that varying the percentage of cells removed at
each sampling time did not have a significant effect on the
parameter estimates with the exception of b=g which varied from
6.9 when 20% of cells were removed to 29 when no cells were
removed, and �max which varied from 0.56 when 20% of cells were
removed to 0.67 when no cells were removed.

3.6. Models without multiple infection

In the models developed above, the effect of amantadine has
been modeled by assuming that the drug blocked infection and
hence the loss of target cells. Thus with a perfect drug (� ¼ 1),
target cells would never be lost. However, in the presence of
amantadine virus still enters cells. Thus, implicit in these models
is the assumption that multiple virions can enter cells and the
successive entry of virions into target cells does not reduce their
ability to accommodate more virions. Successive entry of
infectious virions into cells is commonly called multiple infection.
Here because target cells are never lost when � ¼ 1, in principle an
infinite number of virions can enter. This is not very realistic
(Huang et al., 2008) and thus we decided to also explore two
different approaches to correct the models.

3.6.1. Removal of target cells after virion entry

This approach is equivalent to taking the opposite limiting
case. Whereas before an infinite number of virions could
enter a target cell, here only a single infectious virion will be
allowed to enter. In other words, entry of an infectious virus
removes a cell from the target cell population whether or not this
cell becomes infected. This is modeled by removing the drug
effect, ð1� �Þ, from the target cell equations in the three models,
such that

dT

dt
¼ �bTV (15)

leaving the equations for E, I, and V as before. Indeed, since
adamantanes affect the successful infection of the cell and not the
rate of viral entry into the cell, the drug should only affect the rate
at which target cells enter the infected compartment, not the rate
at which they leave the target cell compartment.

We repeated the fit to the three models where the equation for
the virus titer, V , was replaced with (13), the equation for the
target cells, T, was replaced with (15), and holding the viral
clearance rate fixed at c ¼ 0:105 h�1.

The best-fit of this model occurred for k ¼ 1 (no eclipse
phase). In order to keep an eclipse phase, we fixed k ¼ 0:25 h�1
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Table 4
Parameter estimates for the three models with virion entry into cells and no multiple infection

Param. Simple model (95% CI) Eclipse model (95% CI) Delay model (95% CI)

b (mL h�1) 5:6� 10�7
ð3:529:8Þ � 10�7 8:7� 10�7

ð4:8217Þ � 10�7 6:3� 10�7
ð4:1212Þ � 10�7

k or t (h�1 or h) – – 0.25 Fixed 0.45 (0.0013–2.7)

d (h�1) 0.080 (0.067–0.096) 0.086 (0.071–0.11) 0.078 (0.066–0.094)

p (h�1) 0.22 (0.14–0.39) 0.30 (0.18–0.49) 0.22 (0.14–0.40)

g (mL h�1) 1:5� 10�7
ð0:6623:3Þ � 10�7 0:90� 10�7

ð0:2722:1Þ � 10�7 1:2� 10�7
ð0:3722:4Þ � 10�7

IC50 (mM) 0.40 (0.25–0.76) 0.31 (0.17–0.58) 0.37 (0.18–0.67)

�max 0.56 (0.51–0.62) 0.75 (0.70–0.80) 0.63 (0.54–0.82)

1=k or t (h) – – 4.0 Fixed 0.45 (0.0013–2.7)

1=d (h) 12 (10–15) 12 (9.3–14) 13 (11–15)

p=d 2.8 (1.9–4.2) 3.4 (2.3–5.0) 2.8 (2.0–4.5)

b=g 3.7 (1.8–8.0) 9.6 (4.6–26) 5.1 (2.7–20)

R0 9.3 (6.9–13) 28 (20–46) 13 (8.4–42)

SSR 3.2 (1.6–3.9) 3.5 (1.7–4.5) 3.3 (1.7–3.9)

AICC �69 (36 pts, 6 par) �66 (36 pts, 6 par) �65 (36 pts, 7 par)
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Fig. 6. Infectious viral titer predicted by the three models with virion entry into cells and no multiple infection. The curves represent the best fit of the infectious viral titer, V ,

predicted by the simple model (solid), eclipse model (dashed), and delay model (red), modified to include loss of virus due to cell entry as per (13), and no multiple infection

as per (15), to the plaque assay data (square) from experiments performed on MDCK cells in the HF system at various drug dosages. Each panel corresponds to a different

drug dosage experiment where the drug is maintained at a constant concentration—indicated in the top right corner—over the full duration of the experiment. All the data

were fitted simultaneously and the parameter values obtained are given in Table 4.
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(1=k ¼ 4 h) consistent with values obtained here and adopted in
an earlier mathematical model for influenza A/Equi 2 (H3N8)
infection in large-scale microcarrier cultures of MDCK cells
(Möhler et al., 2005). The best-fit parameter estimates are
presented in Table 4. Fig. 6 shows the fit of the models to the
viral titer data.

The fitted models are in good agreement with the experi-
mental data, and the AICC values indicate that this model
formulation is slightly better supported by the experimental data
than the formulation allowing multiple viral entries into target
cells. The parameter estimates have not been significantly affected
by the change, and the parameters presented in Tables 2 and 4 are
indistinguishable given the confidence intervals.
3.6.2. Lengthening of the eclipse phase

This approach lays probably somewhere between the case
where cells are removed upon entry of a single virion and the case
where cells can absorb an infinite number of virions and remain
susceptible to infection. This is modeled by putting the drug
effect, ð1� �Þ, in front of k rather than b, such that the eclipse
model becomes

dT

dt
¼ �bTV (16)

dE

dt
¼ bTV � ð1� �ÞkE (17)
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dI

dt
¼ ð1� �ÞkE� dI (18)

dV

dt
¼ pI � cV � gTV (19)

We fit this model to the data holding the viral clearance rate fixed
at c ¼ 0:105 h�1. Unfortunately, convergence could not be
achieved. In order to facilitate convergence, we fixed the length
of the eclipse phase in the absence of drug to 1=k ¼ 4 h, as above.
The best-fit parameter estimates are presented in Table 5. Fig. 7
shows the fit of the models to the viral titer data.
Table 5
Parameter estimates for the eclipse model with the drug affecting the length of the

eclipse phase

Param. Eclipse model (95% CI)

b (mL h�1) 30� 10�7
ð13282Þ � 10�7

k ðh�1
Þ 0.25 Fixed

d (h�1) 0.075 (0.057–0.093)

p ðh�1
Þ 0.093 (0.055–0.18)

g ðmL h�1
Þ 0:84� 10�7

ð0:1123:8Þ � 10�7

IC50 (mM) 0.27 (0.12–0.71)

�max 0.83 (0.78–0.88)

1=k (h) 4.0 Fixed

1=d (h) 13 (11–17)

p=d 1.2 (0.86–2.0)

b=g 36 (13–190)

R0 38 (24–85)

SSR 5.1 (1.9–6.8)

AICC �52 (36 pts, 6 par)
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Fig. 7. Infectious viral titer predicted by the eclipse model with virion entry into cells, with

curves represent the best fit of the infectious viral titer, V , predicted by the eclipse mode

drug affecting the length of the eclipse phase (red), to the plaque assay data (square) fro

Each panel corresponds to a different drug dosage experiment where the drug is maint

duration of the experiment. All the data were fitted simultaneously and the parameter
The newly fitted system is in reasonable agreement with the
experimental data, but the AICC value indicates that the model
formulation is actually the worst of all those proposed so far. The
parameter estimates have not been significantly affected by the
change, and the parameters presented in Tables 2, 4, and 5 are
indistinguishable given the confidence intervals. From Fig. 7, we
can see that the fit of the model where the drug affects the length
of the eclipse phase is most similar to that of the model with viral
clearance due to cell entry with multiple infection. The two
models differ most at higher drug concentrations.
3.7. Effect of amantadine

Fig. 4 shows that the presence of amantadine has the effect of
delaying the viral titer peak rather than reducing it. This is because
adamantanes only lower the rate of infection of new cells. Fig. 5
shows that the presence of the drug not only delays the peak of
infected cells, but also reduces the fraction of cells infected at the
peak from about 68% in the absence of drug to less than 48% at the
higher drug concentrations. Note, however, that the total number of
cells infected during the experiment (area under the curve) remains
roughly the same since essentially all cells are infected.

Fitting our models to viral titer data obtained at different
amantadine drug concentrations simultaneously provides an
estimate of the effect of amantadine on viral titer. We found the
IC50 to be 0:40mM (0.23–0:78mM) with the simple model, 0:30mM
(0.17–0:68mM) with the eclipse model, and 0:38mM
(0.21–0:76mM) with the delay model. These values are in good
agreement with the value reported in Ilyushina et al. (2006) of
0:56mM for amantadine in the context of an in vitro infection of
MDCK cells with influenza A/Panama/2007/99 (H3N2).
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We also obtained estimates of �max, the maximum drug effect, of
56% (51–64%) with the simple model, 74% (55–83%) with the eclipse
model, and 60% (54–71%) with the delay model. These low values for
�max are surprising given that in tissue cultures, amantadine blocks
influenza virus yield 90–99%, depending on the virus strain (Takeda
et al., 2002). This discrepancy may be due to the emergence of drug
resistance under treatment. Indeed, adamantanes are known to
rapidly generate drug resistance as a single amino acid mutation is
sufficient to confer drug resistance to a mutant (Abed et al., 2005;
Belshe et al., 1988; Bright et al., 2006; Saito et al., 2003). In order to
explore this possibility, we investigated the effect of fixing �max to a
higher value, 95%, and setting

IC50 ¼
0:40mM tptm
IC50;mutant t4tm

(

where tm is the time where the virus population shifts from being
composed of mostly wild-type strains with IC50 as in Table 2 to
mostly drug-resistant strains with IC50 ¼ IC50;mutant . Note that the
IC50;mutant is not meant to represent the IC50 of a specific mutant
strain (e.g. S31N), but rather that of the combined drug-resistant
mutant population. In reality, the development of drug-resistant
Table 6
Parameters for the case where mutants are taken into consideration

Drug concentration ðmMÞ tm (h) IC50;mutant ðmMÞ �max
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Fig. 8. Effect of considering emergence of drug-resistance on viral titer predictions. The bes

and without considering the effect of the emergence of drug-resistant mutants on �max

�max ¼ 56% (black) is compared against the simple model using �max ¼ 95% and IC50 ¼

parameters are as in Table 2.
mutations is a stochastic process and a number of different mutants
can emerge.

We used the least square fitting method to find the best
estimates for a common IC50;mutant for all experiments and individual
tm for each experiment with a different drug concentration (see
Table 6). In the fitting process, all other parameters were fixed and
given the values presented in Table 2. The viral titer curves resulting
from this modification are presented in Fig. 8. One expects that at
higher drug concentrations the mutant population will have greater
selective advantage, and thus should overtake the wild-type
population more rapidly. In fact, our results in Table 6 show that
tm is lower for higher drug concentrations.

We obtained a SSR of 5.5 fitting the viral titer curves to the
simple model with �max ¼ 95%. While this fit is not as good as that
obtained using �max ¼ 56% ðSSR ¼ 3:6Þ, it did improve the fit at
higher drug concentrations. Indeed, the fits with �max ¼ 95% are
notably worse for the intermediate drug concentrations 0.5 and
5:3mM, but better for the higher concentrations 16 and 53:3mM.
This suggests that if the mutant population could be explicitly
modeled, a larger estimate for �max would likely be found.
Unfortunately, such an explicit model of the drug resistant
mutants involves too many parameters and could not be explored
with the present data. The model presented here, with tm, is a
conceptual model which shows that drug resistance could
account for the low value of �max. This model, with its extra
parameter exhibited very slow and unreliable parameter con-
vergencewhen fitted to the experimental data. For this reason, we
were not able to obtain bootstrap CI for the parameter estimates.
4. Discussion

We analyzed the dynamics of an influenza A/Albany/1/98
(H3N2) viral infection of MDCK cells under various constant
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t fit of the viral titer data using the simple model with virion entry into cells, with

are presented. The simple model using the parameters presented in Table 2 with

0:40mM for tptm and IC50 ¼ 33mM for t4tm with tm as in Table 6 (red). All other
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concentrations of amantadine using mathematical models. The
experiments were conducted in vitro inside a hollow-fiber (HF)
system.

We first attempted to fit the experimental data with the
models used previously in Baccam et al. (2006), i.e. a simple
model describing the population of uninfected and infected cells,
and virions, and a more realistic eclipse-phase model where the
time elapsed between the entry of the infectious virus and the
release of infectious virus by the newly infected cell (the eclipse-
phase) is explicitly taken into consideration. These models, which
were developed for in vivo infection, assume virions are lost by a
first-order process. We also considered a delay model where the
eclipse-phase is included as a delay in the creation of new infected
cells rather than as an additional compartment as in the eclipse-
phase model.

In vitro, mucosal and immune-mediated clearance of virus
cannot occur, but nonetheless we observed loss of infectious
virus within the HF system. This caused us to consider the
possibility that loss of viral infectivity rather than loss of viral
particles could be playing a significant role. Through an
independent experiment, we determined that under normal
experimental conditions at 37 �C, influenza A/Albany/1/98
(H3N2) virions lose infectivity rapidly with a half-life of 6.6 h.
This has important implications for the design of experimental
procedures as inconsistent delays before plating a viral inoculum
for plaque counting could result in significant discrepancies in
quantitation of viral titer.

Given the nature of the mechanisms by which infectious
virions are lost within the HF system, we then considered a
modified version of the standard models with one term for non-
specific clearance due to loss of infectivity, and a second term for
viral loss due to entry of infectious virus into uninfected cells. The
clearance term due to loss of viral infectivity was fixed to the
value determined in our independent experiment, thus reducing
the number of parameters to be estimated. The addition of the
term for loss of virions due to cell entry while fixing the value for
the clearance rate due to loss of viral infectivity significantly
improved the fit of the models to the experimental data. This
confirmed that these more accurate models better capture the
experimental reality.

Using these models, we found the lifespan of infected cells to
be �13 h. We were also able to compute the basic reproductive
number from our parameter estimates and found it to be 11 for
the simple model, 36 for the eclipse model, and 13 for the delay
model. These values are in good agreement with the values of 11
(simple) and 22 (eclipse) found in Baccam et al. (2006) for an in
vivo human primary infection with influenza A/HK/123/77
(H1N1).

We also obtained estimates for the parameters describing
the drug effect. Our estimates for the IC50 of amantadine of
0:4mMfor the simple model, 0:3mM for the eclipse model,
and 0:38mm for the delay model are in good agreement with
the value reported in Ilyushina et al. (2006) of 0:56mM for
amantadine in the context of an in vitro infection of MDCK cells
with influenza A/Panama/2007/99 (H3N2). On the other hand, we
found a maximum drug efficacy for amantadine of 56%, 74%, and
60% with the simple, eclipse, and delay models, respectively.
Amantadine, however, is reported to have a maximum efficacy of
90–99%, depending on the virus strain (Takeda et al., 2002). Using
a simplistic model, we confirmed that the rapid emergence of
drug resistance over the course of treatment with amantadine
could account for the low value obtained for the maximum drug
efficacy.

In conclusion, we developed a set of models of influenza
infection in vitro in a HF system that allows precise control of
antiviral drug concentrations. Fitting the models to data allowed
us to estimate key parameters that characterize influenza A
infection in vitro and the effects of amantadine treatment. We
determined that the emergence of drug-resistant mutants over
the course of treatment needs to be considered explicitly in order
to accurately characterize the effect of adamantanes on the
dynamics of an influenza viral infection. This is particularly
important as understanding the process of emergence of drug-
resistance under adamantane treatment could be of great help in
guiding the design of new drug compounds or drug-combination
therapies.
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