ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

Current Opinion in

Systems Biology

Progress and trends in mathematical modelling of

influenza A virus infections

Andreas Handel', Laura E. Liao® and

Catherine A. A. Beauchemin®*

Abstract

Mathematical modelling of influenza A virus infection has seen
increased use over the last several years. Models applied to
both in vitro and in vivo data have provided important new
understanding of the kinetics of the virus, the role of different
components of the immune response, the importance of non-
infectious influenza A virus particles, the issue of drug treat-
ment and resistance, and the interaction mechanisms during
bacterial co-infections. We review these contributions by
mathematical models, with a focus on studies performed in the
last several years. For continued progress, we emphasize
robust data and parameter estimation approaches.
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Introduction

Mathematical models (MM) have seen an increased use
in all areas of biology. They have been successfully
applied to the study of influenza A virus (IAV), at the
population level and at the level of an infected host
(in vrvo) or cell culture (i vitro). This review focuses on
MM efforts at the  vivo and i vitro scales, where we
specifically focus on mechanistic, dynamical MM

simulations, applied to describing an 2z vivo or in vitro IAV
infection system. Those MMs are most commonly
described by sets of ordinary differential equations. We
review and summarize how these MMs have been applied
to different scenarios and questions concerning [IAV, and
summarize MM findings of the last few years. For reviews
on earlier influenza MM efforts, see e.g., Ref. [1,2].

Improved methodology for in vitro infection
analyses

In vitro MM offer an opportunity to study properties of
the virus and cell-virus interactions in a relatively
controlled system that lacks confounding effects from
host factors. This has enabled the development of ex-
periments best suited to inform MMs; namely the single-
cycle assay, the multiple-cycle assay, and the mock-yield
or viral decay assay [3,4]. The single-cycle experiment
consists in infections initiated with enough virus to infect
most cells almost simultaneously (typically ~3 PFU/
cell), providing information about the average kinetic of a
single cell as it progresses from infection to virus progeny
production to death. The multiple-cycle assay is inocu-
lated with a heavily diluted inoculum (typically ~1 in-
fectious virus per 10° cells), providing information about
the kinetics of virus spread and infectivity through
multiple cycles of cells infecting other cells. The mock-
yield or viral decay assay quantifies virus concentration
over time, under the same conditions as the infection
assays, but in the absence of cells. Supported by this rich
dataset, MMs for TAV infections  vitro have largely
crystallized into the form presented in Figure 1.

Using such MMs, it was established that the duration of
the eclipse and infectious phases for cells infected with
TAV in vitro is normal-like [5]. The rate of loss of IAV
infectivity was determined to be ¢j,s ~0.1 h~!, whereas
that due to IAV RNA degradation is ¢io¢ ~0.01 h~!orless
[6—8]. This now relatively standardized combination of
MM and 3 experimental assays has enabled identifica-
tion of likely mechanisms for the loss of IAV fitness due
to certain antiviral resistance mutations [6,8], and
identified key differences in the virus replication char-
acteristics of human-vs avian-adapted IAV strains [7].

Progress towards better MMs of in vivo
immunity to influenza virus

In 2013, Dobrovolny et al. [9] systematically compared
m vivo IAV infection MMs against a substantial
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Figure 1
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MM describing IAV infections in vitro. Upon infection by virus, Vins, an uninfected, susceptible target cell Tenters the eclipse phase Ej_1», . . During
the eclipse phase, intracellular virus replication gets underway, but the cell is not yet releasing virus progeny. After traversing all E; stages, the cell enters
the productively infectious phase /i_ >, ... »,. While in that phase, it is assumed to produce virus at a constant rate, where pins and pyot are the rates of
production of infectious and total virus per cell, respectively. Only a subset of produced virions are infectious such that piot/pins > 1. Infectious virus (Vi)
are typically measured through infectious dose assays (TCIDs) or plaque or focus forming assays (PFU or FFU), while total virus is typically quantified via
quantitative RT-PCR. The rate at which these virus populations decay or degrade (cinfOr Ciot) COrresponds to the rate at which they cease to be countable
by these methods. The time spent by cells in the eclipse and productively infected phases is commonly modelled with an Erlang distribution, with a
mean + standard deviation duration of rg+(7g//ng ) or 7/x(r;/\/n; ). Through adjusting the number of compartments in each phase (ng and n)), the
Erlang distribution can represent phase durations that follow either exponential, log-normal, normal or even Dirac delta-like distributions.

collection of data available from animal and human
studies. While all MMs tested could reproduce some of
the dynamics, none could fully capture all patterns
observed. More recently, Boianelli et al. [10] reviewed
MMs up to around 2015, highlighting the fact that most
data are not collected with MMs in mind, often only
reporting viral load kinetics, and more rarely, some
sparse measurements of a few immune response com-
ponents. Even when data is collected with MMs in
mind, obtaining rich enough datasets to allow discrimi-
nation between alternative hypotheses regarding
immune response interactions is difficult.

One solution to this issue appears to be the collection of
infection data under serially varying conditions. For
example, Laurie et al. [11] performed a series of infec-
tion experiments in ferrets with two distinct IAV strains,
a primary and a secondary, wherein the timing of
infection with the secondary strain was varied serially to
occur a times prior to or post infection with the primary
strain, as depicted in Figure 2. Analyzing this viral

kinetic data with MMs, McCaw and colleagues were
able to rule out some potential innate response mech-
anisms [12], and to explain how different mechanisms of
CDS8 T-cell memory led to shortened secondary in-
fections observed in the data [13,14]. They also showed
that data from ferrets simultaneously co-infected with 2
strains of [AV allow MMs to discriminate between
mechanisms responsible for fitness differences between
strains [15,16], and showcased a robust approach to
investigate the role of CD8 T-cells [17]. Another
example work exploiting serially perturbed conditions is
that of Li et al. [18] which performed infections at
serially increasing inoculum doses. Dose-dependent
virus kinetics, especially when measured alongside
components of the immune response, is invaluable in
discriminating between alternative mechanisms pro-
posed for innate and adaptive immune responses, as was
recently demonstrated for AV infections [19]. Given
the clear advantage such perturbation-based datasets
offer, we expect that experiments combining multiple
such serial perturbations, e.g. serial or co-infection
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Figure 2

Challenge with secondary strain (different timings explored)

*

l l

*

1 |

Infection with primary strain Time
*
No effect Co-infection Shortened
[} 1] 1]
g = g
=] N W W~ N—" oA S -I)A{- -------
Time Time Time Time
Block/prevention

Virus

Time

Serially varying infection times with two strains. In Ref. [11], ferrets were infected with a primary strain (influenza A virus; black) and secondary strain
(purple or orange), where the timing of infection with the secondary strain was varied. The secondary strain was either of the same type as the primary
strain (influenza A virus; orange) or of a different type (influenza B virus; purple). A variety of virus shedding patterns were observed, including seemingly
no effect or a co-infection with no significance interference, or interference in the form of a delayed, a shortened or even a blocked secondary infection.

experiments at different doses, with measurement of
viral load and several immune response components,
would be invaluable in enabling MMs to further eluci-
date the underlying virus and immune response
dynamics.

Other topics of influenza virus infection
modelling

Defective interfering and semi-infectious particles
Total TAV particles are consistently found to signifi-
cantly outnumber infectious particles [6—8,16,20].
MMs typically assume that particles whose activity does
not register in infectivity assays play no role in the
course of infection. However, it has become increasingly
evident that “non-infectious” particles likely possess
biological activities, potentially playing a role in infec-
tion, transmission and pathogenicity [21,22].

Defective interfering particles (DIPs) are one subset of
non-infectious, biologically active particles, as illus-
trated in Figure 3. MMs began to quantitatively account
for AV DIPs after their accumulation hampered cell-
based vaccine production [23], and their presence
became apparent in high MOI infection experiments
with TAV stocks produced by reverse genetics that could
not be passaged at low MOI [7,8,24].

Using a MM, Frensing et al. [23] found that the accu-
mulation of DIPs could only be controlled if the stock

was completely DIP-free or if de novo generation of
DIPs was exactly zero. Liao et al. used a MM to establish
that an  vitro assay provides accurate counts of DIPs
only if certain criteria regarding both the biology of co-
infection and the experimental procedure were met
[24]. Laske et al. used a detailed MM of intracellular
IAV replication to examine one possible mechanism of
interference: shorter DI RNAs replicating faster than
full-length RNAs [25]. These and future DIP MMs will
be critical in discriminating between mechanisms of
interference [26], ensuring quality control of virus
preparations [27,28], evaluating their potential as anti-
viral agents [29,30], and the effect of their presence on
vaccine efficacy [27,31].

Similar to DIPs, semi-infectious particles (SIPs) also
require co-infection to propagate, but are not thought to
interfere with TAV replication [22]. To date, only one
MM incorporates both SIPs and DIPs, and it suggests
SIPs promote reassortment while DIPs suppress reas-
sortment [32].

Co-infections

It has long been noted that IAV infection can lead to an
increased probability of severe secondary bacterial
infection, most notably pneumococcal infections [33]. A
number of MM studies have investigated the potential
mechanisms for this interaction between IAV and
pneumococcal infections [34,35], the implications for

Current Opinion in Systems Biology 2018, 12:30—-36

www.sciencedirect.com


www.sciencedirect.com/science/journal/24523100

Progress and trends in mathematical modelling of influenza A virus infections Handel et al. 33

Figure 3
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Defective interfering influenza particles suppress infectious virus titer. (Top) When standard infectious virus (purple) infects a cell, the progeny
comprises standard virus as well as defective interfering (orange) and non-interfering (white) particles. When a defective non-interfering particle infects a
cell, no progeny is produced, and further infection by replication competent virus is not impacted. In contrast, when a defective interfering particle infects a
cell on its own, no progeny is produced, unless the cell becomes co-infected with standard virus. In such a case, the co-infected cell will produce mostly
DIPs instead of standard virus. The co-infection kinetics of standard virus + DIPs in a population of cells is affected by factors such as the timing of
infection with DIPs relative to standard virus, and the ratio of DIPs to standard virus progeny produced by co-infected cells. (Bottom) Compared to low MOI
infections (~107° PFU/cell), the presence of DIPs in the virus stock causes the collapse of standard infectious virus titer in high MOI infections (~3 PFU/
cell) where many co-infection events occur, while the total particle concentration remains the same [Image is adapted from Figures 1 and 2 in Ref. [24]
(®2016, the Authors of [24]), used under the terms of the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/, which

permits unrestricted use, provided the original author and source are credited.].

co-infection risk [36,37], and its effects on drug treat-
ment [38,39]. MMs have also studied simultaneous
infection with IAV and a variety of other viruses [40].
The general challenge for these kinds of studies is that
2-pathogen MMs are generally more complex than MMs
for a single pathogen, and thus require more data to
yield robust MM analyses.

Anti-influenza interventions

MMs have been applied to IAV infections to inform
therapeutic interventions with existing antiviral drugs
[39,41—43], to study antiviral resistance emergence
[44—48], to propose new interventions [49], and to
explore the impact of vaccines [50]. To use MMs for
these purposes, it is important to understand the main
underlying mechanisms of interaction between path-
ogen, immune response and intervention. While some

progress has been made in that regard, the increased
usefulness of MMs as robust predictive tools for specific
interventions will rely on further refinements of our
overall understanding regarding the details of the
infection [42].

Cross-scale models

The realization that the dynamics of IAV spans multiple
temporal and spatial scales is well-appreciated [51].
MMs bridging the within- and between-host scales have
explored the role of within-host and environmental
factors for avian influenza [52,53], investigated the role
of tissue tropism on virus fitness [54], and assessed the
impact of individual heterogeneity on population-level
outcomes [55,56]. Working at a lower scale, Heldt
et al. [57] extended their intracellular IAV MMs to
bridge the scale of intracellular virus replication with
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that of intercellular 2 vitro/vivo 1AV spread. The chal-
lenge for all such MMs is that their increased
complexity requires even more data, self-consistent over
all scales; such data is rather rare.

Conclusion

Over the last several years, MMs for influenza have
become more refined, robust and applied to a variety of
questions. To continue progress, several conditions need
to be met: 1) Further increases in data quantity and
quality. This not only applies to the richness of data
coming from different sources (e.g., different m vitro
assays or /z vivo infection conditions). The data also
need to be robust and reliable. As an example, Paradis
et al. [8] encountered reproducibility issues i vitro
when analyzing the impact of the 1223V neuraminidase
(NA) mutation in a 2009 IAV pandemic strain back-
ground. They showed that parameters for the wild-type
(WT) strain varied more between experiments than the
WT varied from its mutant within each experiment [8].
The issue of robust data is likely even more important
for in vivo experiments, where it is widely known that
e.g., the ‘same’ mouse strain purchased from different
sources might lead to different results. The issue of
reliable and reproducible data and findings is of course
not limited to AV and MMs, and has recently received
wide attention [58]. 2) Improved MM parameter esti-
mation (PE) techniques. With wider awareness of the
issue of parameter identifiability and correlations,
simplistic “best-fit” PE are giving way to more accurate
and robust Bayesian PE methods, e.g., partially observed
Markov processes for stochastic models [59], Markov
chain Monte Carlo (MCMC) methods [7,8,60].
Increasingly, authors provide, or reviewers rightfully
demand, diagnostic plots showing the degree of corre-
lation between parameter pairs and proofs of PE
convergence. 3) Further strengthening of collaborations
between modellers and experimentalists will help drive
the previous two conditions. While it is common in areas
such as epidemiology to involve modellers and statisti-
cians from the beginning of a project, this is not as
common yet for z vitro or in vivo studies, where an
experiment is often done without the initial goal of
fitting MMs to the data. But the number of tightly in-
tegrated, successful collaborations between modellers
and experimentalists is increasing [20,34,37,61], prom-
ising future progress toward understanding the many
complicated mechanisms of IAV infections.
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