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Abstract
Mathematical modelling of influenza A virus infection has seen
increased use over the last several years. Models applied to
both in vitro and in vivo data have provided important new
understanding of the kinetics of the virus, the role of different
components of the immune response, the importance of non-
infectious influenza A virus particles, the issue of drug treat-
ment and resistance, and the interaction mechanisms during
bacterial co-infections. We review these contributions by
mathematical models, with a focus on studies performed in the
last several years. For continued progress, we emphasize
robust data and parameter estimation approaches.
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Introduction
Mathematical models (MM) have seen an increased use
in all areas of biology. They have been successfully
applied to the study of influenza A virus (IAV), at the
population level and at the level of an infected host

(in vivo) or cell culture (in vitro). This review focuses on
MM efforts at the in vivo and in vitro scales, where we
specifically focus on mechanistic, dynamical MM
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simulations, applied to describing an in vivo or in vitro IAV
infection system. Those MMs are most commonly
described by sets of ordinary differential equations. We
review and summarize how theseMMs have been applied
to different scenarios and questions concerning IAV, and
summarizeMMfindings of the last few years. For reviews
on earlier influenza MM efforts, see e.g., Ref. [1,2].
Improved methodology for in vitro infection
analyses
In vitro MMs offer an opportunity to study properties of
the virus and cell-virus interactions in a relatively
controlled system that lacks confounding effects from
host factors. This has enabled the development of ex-

periments best suited to informMMs; namely the single-
cycle assay, the multiple-cycle assay, and the mock-yield
or viral decay assay [3,4]. The single-cycle experiment
consists in infections initiatedwith enough virus to infect
most cells almost simultaneously (typically w3 PFU/
cell), providing information about the average kinetic of a
single cell as it progresses from infection to virus progeny
production to death. The multiple-cycle assay is inocu-
lated with a heavily diluted inoculum (typically w1 in-
fectious virus per 105 cells), providing information about
the kinetics of virus spread and infectivity through

multiple cycles of cells infecting other cells. The mock-
yield or viral decay assay quantifies virus concentration
over time, under the same conditions as the infection
assays, but in the absence of cells. Supported by this rich
dataset, MMs for IAV infections in vitro have largely
crystallized into the form presented in Figure 1.

Using such MMs, it was established that the duration of
the eclipse and infectious phases for cells infected with
IAV in vitro is normal-like [5]. The rate of loss of IAV
infectivity was determined to be cinfw0:1 h�1, whereas

that due to IAVRNA degradation is ctotw0:01 h�1 or less
[6e8]. This now relatively standardized combination of
MM and 3 experimental assays has enabled identifica-
tion of likely mechanisms for the loss of IAV fitness due
to certain antiviral resistance mutations [6,8], and
identified key differences in the virus replication char-
acteristics of human-vs avian-adapted IAV strains [7].
Progress towards better MMs of in vivo
immunity to influenza virus
In 2013, Dobrovolny et al. [9] systematically compared
in vivo IAV infection MMs against a substantial
www.sciencedirect.com
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Figure 1

MM describing IAV infections in vitro. Upon infection by virus, Vinf, an uninfected, susceptible target cell Tenters the eclipse phase Ei¼1;2;…;nE
. During

the eclipse phase, intracellular virus replication gets underway, but the cell is not yet releasing virus progeny. After traversing all Ei stages, the cell enters
the productively infectious phase Ij¼1;2;…;nI

. While in that phase, it is assumed to produce virus at a constant rate, where pinf and ptot are the rates of
production of infectious and total virus per cell, respectively. Only a subset of produced virions are infectious such that ptot=pinf[1. Infectious virus ðVinfÞ
are typically measured through infectious dose assays (TCID50) or plaque or focus forming assays (PFU or FFU), while total virus is typically quantified via
quantitative RT-PCR. The rate at which these virus populations decay or degrade (cinfor ctot) corresponds to the rate at which they cease to be countable
by these methods. The time spent by cells in the eclipse and productively infected phases is commonly modelled with an Erlang distribution, with a
mean ± standard deviation duration of tE±ðtE=

ffiffiffiffiffiffi

nE
p Þ or tI±ðtI=

ffiffiffiffiffi

nI
p Þ. Through adjusting the number of compartments in each phase (nE and nI), the

Erlang distribution can represent phase durations that follow either exponential, log-normal, normal or even Dirac delta-like distributions.
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collection of data available from animal and human
studies. While all MMs tested could reproduce some of
the dynamics, none could fully capture all patterns
observed. More recently, Boianelli et al. [10] reviewed
MMs up to around 2015, highlighting the fact that most
data are not collected with MMs in mind, often only
reporting viral load kinetics, and more rarely, some

sparse measurements of a few immune response com-
ponents. Even when data is collected with MMs in
mind, obtaining rich enough datasets to allow discrimi-
nation between alternative hypotheses regarding
immune response interactions is difficult.

One solution to this issue appears to be the collection of
infection data under serially varying conditions. For
example, Laurie et al. [11] performed a series of infec-
tion experiments in ferrets with two distinct IAV strains,
a primary and a secondary, wherein the timing of
infection with the secondary strain was varied serially to

occur a times prior to or post infection with the primary
strain, as depicted in Figure 2. Analyzing this viral
www.sciencedirect.com
kinetic data with MMs, McCaw and colleagues were
able to rule out some potential innate response mech-
anisms [12], and to explain how different mechanisms of
CD8 T-cell memory led to shortened secondary in-
fections observed in the data [13,14]. They also showed
that data from ferrets simultaneously co-infected with 2
strains of IAV allow MMs to discriminate between

mechanisms responsible for fitness differences between
strains [15,16], and showcased a robust approach to
investigate the role of CD8 T-cells [17]. Another
example work exploiting serially perturbed conditions is
that of Li et al. [18] which performed infections at
serially increasing inoculum doses. Dose-dependent
virus kinetics, especially when measured alongside
components of the immune response, is invaluable in
discriminating between alternative mechanisms pro-
posed for innate and adaptive immune responses, as was
recently demonstrated for IAV infections [19]. Given
the clear advantage such perturbation-based datasets

offer, we expect that experiments combining multiple
such serial perturbations, e.g. serial or co-infection
Current Opinion in Systems Biology 2018, 12:30–36
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Figure 2

Serially varying infection times with two strains. In Ref. [11], ferrets were infected with a primary strain (influenza A virus; black) and secondary strain
(purple or orange), where the timing of infection with the secondary strain was varied. The secondary strain was either of the same type as the primary
strain (influenza A virus; orange) or of a different type (influenza B virus; purple). A variety of virus shedding patterns were observed, including seemingly
no effect or a co-infection with no significance interference, or interference in the form of a delayed, a shortened or even a blocked secondary infection.
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experiments at different doses, with measurement of
viral load and several immune response components,
would be invaluable in enabling MMs to further eluci-

date the underlying virus and immune response
dynamics.
Other topics of influenza virus infection
modelling
Defective interfering and semi-infectious particles
Total IAV particles are consistently found to signifi-
cantly outnumber infectious particles [6e8,16,20].
MMs typically assume that particles whose activity does
not register in infectivity assays play no role in the
course of infection. However, it has become increasingly
evident that “non-infectious” particles likely possess
biological activities, potentially playing a role in infec-
tion, transmission and pathogenicity [21,22].

Defective interfering particles (DIPs) are one subset of

non-infectious, biologically active particles, as illus-
trated in Figure 3. MMs began to quantitatively account
for IAV DIPs after their accumulation hampered cell-
based vaccine production [23], and their presence
became apparent in high MOI infection experiments
with IAV stocks produced by reverse genetics that could
not be passaged at low MOI [7,8,24].

Using a MM, Frensing et al. [23] found that the accu-
mulation of DIPs could only be controlled if the stock
Current Opinion in Systems Biology 2018, 12:30–36
was completely DIP-free or if de novo generation of
DIPs was exactly zero. Liao et al. used a MM to establish
that an in vitro assay provides accurate counts of DIPs

only if certain criteria regarding both the biology of co-
infection and the experimental procedure were met
[24]. Laske et al. used a detailed MM of intracellular
IAV replication to examine one possible mechanism of
interference: shorter DI RNAs replicating faster than
full-length RNAs [25]. These and future DIP MMs will
be critical in discriminating between mechanisms of
interference [26], ensuring quality control of virus
preparations [27,28], evaluating their potential as anti-
viral agents [29,30], and the effect of their presence on
vaccine efficacy [27,31].

Similar to DIPs, semi-infectious particles (SIPs) also
require co-infection to propagate, but are not thought to
interfere with IAV replication [22]. To date, only one
MM incorporates both SIPs and DIPs, and it suggests
SIPs promote reassortment while DIPs suppress reas-
sortment [32].

Co-infections
It has long been noted that IAV infection can lead to an
increased probability of severe secondary bacterial
infection, most notably pneumococcal infections [33]. A
number of MM studies have investigated the potential

mechanisms for this interaction between IAV and
pneumococcal infections [34,35], the implications for
www.sciencedirect.com
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Figure 3

Defective interfering influenza particles suppress infectious virus titer. (Top) When standard infectious virus (purple) infects a cell, the progeny
comprises standard virus as well as defective interfering (orange) and non-interfering (white) particles. When a defective non-interfering particle infects a
cell, no progeny is produced, and further infection by replication competent virus is not impacted. In contrast, when a defective interfering particle infects a
cell on its own, no progeny is produced, unless the cell becomes co-infected with standard virus. In such a case, the co-infected cell will produce mostly
DIPs instead of standard virus. The co-infection kinetics of standard virus + DIPs in a population of cells is affected by factors such as the timing of
infection with DIPs relative to standard virus, and the ratio of DIPs to standard virus progeny produced by co-infected cells. (Bottom) Compared to low MOI
infections (~10−5 PFU/cell), the presence of DIPs in the virus stock causes the collapse of standard infectious virus titer in high MOI infections (~3 PFU/
cell) where many co-infection events occur, while the total particle concentration remains the same [Image is adapted from Figures 1 and 2 in Ref. [24]
(©2016, the Authors of [24]), used under the terms of the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/, which
permits unrestricted use, provided the original author and source are credited.].
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co-infection risk [36,37], and its effects on drug treat-
ment [38,39]. MMs have also studied simultaneous
infection with IAV and a variety of other viruses [40].
The general challenge for these kinds of studies is that
2-pathogen MMs are generally more complex than MMs
for a single pathogen, and thus require more data to
yield robust MM analyses.

Anti-influenza interventions
MMs have been applied to IAV infections to inform

therapeutic interventions with existing antiviral drugs
[39,41e43], to study antiviral resistance emergence
[44e48], to propose new interventions [49], and to
explore the impact of vaccines [50]. To use MMs for
these purposes, it is important to understand the main
underlying mechanisms of interaction between path-
ogen, immune response and intervention. While some
www.sciencedirect.com
progress has been made in that regard, the increased
usefulness of MMs as robust predictive tools for specific
interventions will rely on further refinements of our
overall understanding regarding the details of the
infection [42].

Cross-scale models
The realization that the dynamics of IAV spans multiple
temporal and spatial scales is well-appreciated [51].
MMs bridging the within- and between-host scales have

explored the role of within-host and environmental
factors for avian influenza [52,53], investigated the role
of tissue tropism on virus fitness [54], and assessed the
impact of individual heterogeneity on population-level
outcomes [55,56]. Working at a lower scale, Heldt
et al. [57] extended their intracellular IAV MMs to
bridge the scale of intracellular virus replication with
Current Opinion in Systems Biology 2018, 12:30–36
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that of intercellular in vitro/vivo IAV spread. The chal-
lenge for all such MMs is that their increased
complexity requires even more data, self-consistent over
all scales; such data is rather rare.
Conclusion
Over the last several years, MMs for influenza have
become more refined, robust and applied to a variety of
questions. To continue progress, several conditions need
to be met: 1) Further increases in data quantity and
quality. This not only applies to the richness of data
coming from different sources (e.g., different in vitro
assays or in vivo infection conditions). The data also

need to be robust and reliable. As an example, Paradis
et al. [8] encountered reproducibility issues in vitro
when analyzing the impact of the I223V neuraminidase
(NA) mutation in a 2009 IAV pandemic strain back-
ground. They showed that parameters for the wild-type
(WT) strain varied more between experiments than the
WT varied from its mutant within each experiment [8].
The issue of robust data is likely even more important
for in vivo experiments, where it is widely known that
e.g., the ‘same’ mouse strain purchased from different
sources might lead to different results. The issue of

reliable and reproducible data and findings is of course
not limited to IAV and MMs, and has recently received
wide attention [58]. 2) Improved MM parameter esti-
mation (PE) techniques. With wider awareness of the
issue of parameter identifiability and correlations,
simplistic “best-fit” PE are giving way to more accurate
and robust Bayesian PE methods, e.g., partially observed
Markov processes for stochastic models [59], Markov
chain Monte Carlo (MCMC) methods [7,8,60].
Increasingly, authors provide, or reviewers rightfully
demand, diagnostic plots showing the degree of corre-
lation between parameter pairs and proofs of PE

convergence. 3) Further strengthening of collaborations
between modellers and experimentalists will help drive
the previous two conditions. While it is common in areas
such as epidemiology to involve modellers and statisti-
cians from the beginning of a project, this is not as
common yet for in vitro or in vivo studies, where an
experiment is often done without the initial goal of
fitting MMs to the data. But the number of tightly in-
tegrated, successful collaborations between modellers
and experimentalists is increasing [20,34,37,61], prom-
ising future progress toward understanding the many

complicated mechanisms of IAV infections.
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